Pirelli Site Redevelopment: ^{Received} ^{03/02/2017} Albion Gateway Mixed-use Development

P/2017/00141

Flood Risk and Drainage Statement: Phase 3

Client: St Modwen Developments Ltd

August 2016

Document history

Job numb	er: 5121643		Document ref: 5121643/TN/DS/001 Flood Risk and Drainage Statement: Phase 3						
Revision	Purpose description Originated		Checked	Reviewed	Authorised	Date			
Rev 1.0	For Planning	JD	OP	СВ	MT	08/09/16			
Rev 2.0	For Planning	OP	JD	СВ	MT	09/09/16			
Rev 3.0	For Planning	OP	JD	СВ	MT	13/09/16			
Rev 4.0	For Planning	JD	OP	СВ	MT	21/10/16			

1. Background

The new commercial/industrial Albion Gateway development proposed for the southern side of Pirelli's factory site in Burton-upon-Trent lends itself to two outfall locations; the Stretton Brook to the north and the Horninglow Channel to the south. A development enquiry was submitted to Severn Trent Water and a response has been received stating that surface water proposals should be agreed with the Lead Local Flood Authority (Staffordshire County Council).

The original outline planning permission reference for the whole development site is P/2011/01130/JN/PO. This was subsequently amended via a S73 application modifying aspects of conditions, including around finished floor levels.

Phase 1 was granted a reserved matters approval by the Council under reference P/2014/01504 on 13 February 2015. Phase 2 was granted reserved matters approval by the Council under reference P/2015/00285 on 21 May 2015. Phase 1 and much of 2 have been constructed and a technical note relating to drainage has been produced previously, see Technical Note - Derby Road Drainage Discharge Rates - Phases 1 & 2, enclosed in Appendix G. Confirmation that the reconfigured part of Phase 2 still complies with the principles previously approved is included in Appendix H.

This technical note and planning submission relates to Phase 3 at Albion Gateway and provides a summary of the proposed drainage strategy. The drainage strategy for Phase 3 has been developed on the basis that the discharge point will be to the Horninglow Channel to the south. Phase 3 comprises a revision to the Phase 2 reserved matters consent and further development across parts of the site previously addressed by the original outline permission. The approach here is therefore to review and apply earlier agreed principles to the current proposals to ensure consistency with what has been previously been approved.

This note covers the drainage for the Horinglow Channel catchment while the reformatted part of Phase 2 is to be drained in a manner consistent with the details previously approved for that Phase, as indicated on the plan at Appendix F

1.1. Flood Risk Assessment

The original outline planning permission for the development site as a whole (East Staffordshire Borough Council Application Reference P/2011/01130/JN/PO) includes the following drainage condition (Condition 25):

25. The development hereby approved shall only be carried out in accordance with the recommendations set out in Section 8.3 of the approved Flood Risk Assessment (prepared by Halcrow and dated 1st August 2011).

Reason: As recommended by the Environment Agency to minimise the risk of flooding in accordance with the National Planning Policy Framework (in particular Section 10).

Extensive works have been carried out for the site to ensure the development progresses in accordance with the approved FRA¹, including but not limited to: a Technical Note² addressing the conditions for finished floor levels; as above, a Technical Note³ addressing the discharge rates for Phase 1 and 2; and additional supporting strategy documents and drawings. The strategy for Phase 3 will be to design in accordance with

³ Technical Note - Pirelli Site Redevelopment: Albion Gateway Mixed-use Development, Drainage Discharge Rates: Phases 1 and 2. Report produced by Atkins 03/03/15.

¹ Flood Risk Assessment, Document: PI/EPRB/21 Version 1.0, Pirelli Factory, Burton upon Trent. Report produced by Halcrow 01/08/11

² Technical Note – Proposal to amend Planning Condition 25, Albion Gateway. Report produced by Atkins 11/05/15.

the approved FRA whilst continuing to incorporate the principles agreed through the additional work done to date.

The following text is an extract from Section 8.3 ("Recommendations") of the FRA produced by Halcrow, with a response from Atkins in terms of how these recommendations continue to be met:

To provide additional safety to the development and to ensure any residual flood risk is mitigated for, it is recommended that the following measures are incorporated into the design, build and operation of the Pirelli development:

- . . .
- 1. Finished floor levels are set 46.11mAOD to the new development

Response: This recommendation has been addressed under a separate technical note produced by Atkins, 'Albion Gateway (Pirelli Redevelopment) – Finished Floor Levels, dated 11 March 2015. See Appendix A

- 2. That a safe route of access and egress is provided for all three areas of the development Response: This recommendation has been addressed under the technical note referenced above.
- 3. That residents, hotel owners, pub landlords, company office managers and the Pirelli site manager are aware of the flood risks to the site, the flood warning service available and the emergency evacuation plan and advice on what to do the receipt of a severe flood warning. Response: Information to be included in operation and maintenance manuals which will be shared with appropriate parties following completion.
- 4. Flood resilient design and construction techniques be adopted during the detailed building design as set out in the guidance provided 'improving the Flood Performance of New Buildings: Flood Resilient Construction'

Response: This will be reviewed/addressed at detailed design. Building finished floor levels are to set a min 150mm above adjacent ground levels and proposed finishes to be graded away from buildings where possible to help alleviate the risk.

5. Surface water runoff from the site is disposed of in a sustainable manner through the use of SuDS as recommended by PPS 25. A betterment of 30 % is also applied to the rate at which surface water runoff is discharged from the site to fully account for the effects of climate change. Response: Addressed as part of this technical note.

2. Proposed Discharge Rate

Phase 3 is currently not in use and is deemed a greenfield site. The proposed restricted discharge rate will replicate the existing QBAR⁴ rate (approximately the 1 in 2.3 year rainfall event). The Interim Code of Practice for Sustainable Drainage Systems⁵ has been used to determine the existing QBAR rate, (see Micro Drainage calculation sheet included in Appendix B), as a result a QBAR flow rate of 8.8 l/s has been calculated.

The existing QBAR rate has then been used as the maximum proposed discharge rate for the site (up to including the 100 year event plus 20% for climate change). Therefore this will offer betterment over the current unrestricted greenfield run-off.

3. **Proposed Drainage Strategy**

3.1 Surface Water

This section should be ready in conjunction with Appendix F: the proposed drainage strategy drawing reference 5121643-ATK-DR-D-0807.

Surface water will typically drain via gullies or channel drains to a gravity fed pipe system which will flow to a proposed attenuation pond located to the south western part of the site adjacent to Horninglow channel.

The proposed discharge rate will be controlled via a flow control device downstream of the proposed attenuation pond as shown on drawing 5121643-ATK-DR-D-0807.

Due to the number of proposed car parking spaces an oil interceptor has been proposed immediately upstream of the attenuation pond.

The outfall for Phase 3 is into Horninglow channel, which ultimately discharges to the River Trent. On review of the topographical survey information and existing river modelling⁶ provided by the Environment Agency (EA), it has been established the network should be designed with a free discharge and surcharged outfall condition. The closest node to the site outfall is SHOB01_059.2 and the water level used for the surcharged analysis is 45.24 mAOD, which is the level in the 100 year return period. A copy of the EA data is included in Appendix C.

Enclosed within Appendix D are the calculations and results for the proposed surface water system. The results of these calculations identify that the site is resilient to the 100 year event plus 20% (for climate change) on site with a simultaneous 1 in 100 year event river flow in the Horninglow channel. In this extreme event, there is 12m³ of flooding reported at the pond node. To manage these flows the proposed ground in this area has been lowered to ensure that this water does not overflow towards a proposed building and is contained within the site boundary.

⁴ QBAR is defined as the mean annual flood flow from a rural catchment, approximately 2.3 year return period.

⁵ Interim Code of Practice for Sustainable Drainage Systems. Produced by the National SuDS Working Group, July 2004.

⁶ Data provided by the EA in a response to a Product 4 request, information provided in March 2015.

3.2 Foul Water

This section should be ready in conjunction with Appendix F: the proposed drainage strategy drawing reference 5121643-ATK-DR-D-0807.

The proposed foul water drainage strategy is to drain via gravity to an on plot private pumping station. From the pumping station there will be a proposed rising main that will run across the site, towards Derby Road, where it will follow the highway to an existing Severn Trent manhole SK25243901.

This point of connection has been approved in principle by Severn Trent Water and a requisition process is being progressed to allow the proposed connection to be formed as there is a small length of sewer that will be constructed through private land. A copy of initial preliminary desktop report is included in Appendix E.

The drainage proposals for the site have been designed in accordance with Sewers for Adoption 7th Edition and the FRA produced by Halcrow. Further detailed designs should also meet the requirements as set out in this document as well as industry standards and best practice.

4. Conclusion

This statement has addressed flood risk and drainage issues surrounding the Phase 3 "Albion Gateway" development of land adjacent to the Pirelli premises. Phase 3 is a reconfiguration of part of Phase 2, plus further development within an area previously addressed by an overarching outline planning permission. This statement explains how Phase 3 can be understood in the context of extensive technical work previously undertaken in support of the earlier phases of development on this site. The approach to flood risk and drainage for Phase 3 is a continuation of the principles already agreed for earlier phases, therefore Phase 3 can be delivered successfully from a flood risk and drainage perspective.

Appendix A. Albion Gateway (Pirelli Redevelopment) – Finished Floor Levels

Project:	Albion Gateway (Pirelli Redevelopment)	То:	Jason Tait (Planning Prospects)				
Subject:	Finished Flood Levels	From:	Cathy Owens (Atkins)				
Date:	11 Mar 2015	cc:	Mark Smith (Atkins); Keith Rainford (Atkins); Paul Birkenshaw (Atkins)				

The Albion Gateway development proposed for the existing Pirelli site in Burton upon Trent has been granted planning permission subject to a number of conditions, including Planning Condition 25 which references Halcrow's FRA which in turn refers to finished floor levels required to mitigate against flood risk:

The development hereby approved shall only be carried out in accordance with the recommendations set out in Section 8.3 of the approved Flood Risk Assessment (prepared by Halcrow and dated 1st August 2011). Reason: As recommended by the Environment Agency to minimise the risk of flooding in accordance with the National Planning Policy Framework (in particular Section 10).

As a response to the 2008 Level 2 SFRA commissioned by East Staffordshire Borough Council (ESBC), Halcrow's site specific FRA stipulated that finished floor levels (FFLs) for the development should be set at 46.11m AOD to mitigate against flooding and protect the development from a breach occurrence of the existing flood defences.

Atkins has been commissioned by St Modwen Developments to demonstrate why a change should be made to the above condition such that the FFLS can be lower than 46.11m AOD. The proposal to provide lower FFLs (to what is stated in the approved FRA) has been put forward following a review of more recent flooding information made available from ESBC as detailed below.

Halcrow's original (approved) Flood Risk Assessment (FRA) for the Pirelli site was based on information provided in ESBC's Level 1 and Level 2 Strategic Flood Risk Assessments originally produced in 2008. Since then, East Staffordshire Borough Council have commissioned WSP to undertake an update to their Level 1 and Level 2 Strategic Flood Risk Assessments and have produced a report dated October 2013.

Table 13 of WSP's report (dated 2013) includes a summary of the overall flood risk to the Pirelli site in Burton upon Trent. An extract of this table is included in Table 1.

Access and egress during 1 in 100 year + Climate Change storm events	General summary comments
Site and surrounding area is not at risk. Safe access/egress via Princess Way.	Defended area. Small surface water risk and high susceptibility to groundwater flooding. Suitable for all types of development.

Table 1. Overall flood risk to the Pirelli site in Burton upon Trent

Table 14 of the same (WSP) report details the potential impacts of the new development on the flood risk to Burton upon Trent and finished floor level requirements. An extract of this table is included in Table 2.

Post development surface water run-off	Floodplain compensation	Finished floor levels
There is flood risk to the surrounding area and	None of the site is shown to	Finished floor levels do not
limited to at most the existing brownfield runoff	and therefore floodplain	the current ground level,
rates. The potential for limiting the outflow	compensation will not be	other than the inclusion of
the flood risk to the downstream properties.	requirea.	with Building Regulations.

 Table 2.
 Potential impacts of the new development on the flood risk to Burton upon Trent and finished floor level requirements

Another reason for us proposing FFLs less than 46.11m AOD (in addition to following advice from ESBC as detailed in the above tables), is because we are looking to minimise the volume of imported fill and maintain a sustainable approach to the overall development which would not require the importation of large quantities of fill (requiring large numbers of vehicular traffic). In addition significant raising of site levels would have a material impact on the existing retained Pirelli factory site and operations.

Atkins, in advance of submitting these proposals formally to the Environment Agency, has had initial discussions with them and the overall view was supportive of the approach that is being taken.

The detailed design of the development will consider assessment of safe access and egress, flood depths, rate of onset of flood waters, Building Regulations and the associated information provided within WSP's report dated 29/10/2013 (SFRA Update).

Flood resilient design and the inclusion of sustainable drainage techniques will be incorporated into the design development.

Appendix B. Rural run-off Calculation for existing greenfield area

Atkins Limited		Page 1
Woodcote Grove		
Epsom		L'
Surrey KT18 5BW		Micro
Date 06/09/2016 14:52	Designed by down1679	
File	Checked by	Diamage
Micro Drainage	Source Control 2015.1	·

ICP SUDS Mean Annual Flood

Input

Return Period (years) 100 SAAR (mm) 700 Urban 0.000 Area (ha) 2.000 Soil 0.450 Region Number Region 4

Results 1/s

QBAR Rural 8.8 QBAR Urban 8.8

Q100 years 22.6

Q1 year 7.3 Q30 years 17.2 Q100 years 22.6

Appendix C. EA - Horninglow Channel Flood Data

© Crown copyright and database rights 2014 Ordnance Survey 100024198 © Environment Agency copyright and / or database rights 2015. All rights reserved. Use subject to the terms and conditions of the copyright statement and disclaimer.

Modelled levels

swwm-9647			R	eturn p	eriod (y	ears), le	vels (m	AOD)				
SON ref.	Node	02YR	05YR	10YR	20YR	50YR	75YR	100YR	1000YR	east	north	
Trent0484	SHOB01_020.2	43.91	44.27	44.50	44.72	45.02	45.11	45.19	45.92	425754	324939	
Trent0485	SHOB01_013.1	43.91	44.26	44.50	44.71	45.01	45.10	45.19	45.95	425759	324937	
Trent0486	SHOB01_007.1	43.91	44.26	44.49	44.71	45.01	45.10	45.19	46.08	425811	324911	
Trent0487	T316122500a	43.92	44.28	44.50	44.72	45.02	45.11	45.19	45.88	425861	324859	
Trent0488	SHOB01_007.2	43.92	44.28	44.50	44.72	45.02	45.11	45.19	45.88	425865	324866	
Trent0490	T316122500b	43.92	44.28	44.50	44.72	45.02	45.11	45.19	45.88	425871	324866	
Trent0498	SHOB01_020.1	43.92	44.27	44.51	44.72	45.02	45.11	45.19	45.91	425686	324968	
Trent0499	SHOB01_023.2	43.92	44.28	44.52	44.73	45.03	45.12	45.19	45.92	425675	324973	
Trent0500	SHOB01_023.1	43.92	44.28	44.52	44.73	45.03	45.12	45.19	45.92	425663	324978	
Trent0501	SHOB01_025.2	43.93	44.29	44.52	44.74	45.04	45.13	45.20	45.93	425659	324979	
Trent0502	SHOB01_025.1	43.93	44.29	44.52	44.74	45.04	45.13	45.20	45.93	425644	324986	
Trent0503	SHOB01_030.2	43.93	44.30	44.53	44.75	45.05	45.14	45.20	45.93	425632	324991	
Trent0504	SHOB01_030.1	43.94	44.30	44.54	44.75	45.05	45.14	45.20	45.93	425601	325003	
Trent0505	SHOB01_041.2	43.94	44.31	44.55	44.76	45.06	45.15	45.21	45.94	425541	325017	
Trent0506	SHOB01_041.1	43.94	44.31	44.55	44.76	45.06	45.15	45.21	45.94	425485	325019	
Trent0507	SHOB01_045.1	43.95	44.31	44.55	44.76	45.06	45.15	45.21	45.94	425453	325023	
Trent0508	SHOB01_049.1	43.95	44.31	44.55	44.76	45.06	45.15	45.21	45.94	425412	325038	
Trent0509	SHOB01_059.2	43.97	44.37	44.63	44.82	45.14	45.21	45.24	45.94	425389	325043	
Trent0510	SHOB01_059.1	43.98	44.38	44.64	44.83	45.14	45.21	45.24	45.94	425318	325046	
Trent0511	SHOB01_065.2	43.98	44.38	44.64	44.83	45.14	45.21	45.24	45.94	425303	325047	
Trent0512	SHOB01_065.1	43.99	44.38	44.64	44.83	45.14	45.22	45.24	45.94	425257	325055	
Trent0513	SHOB01_073.2	43.99	44.39	44.65	44.83	45.15	45.22	45.25	45.94	425247	325056	
Trent0520	SHOB01_114.1	44.04	44.44	44.70	44.87	45.19	45.28	45.30	45.95	424824	325231	
Trent0521	SHOB01_114.2	44.04	44.43	44.70	44.87	45.19	45.28	45.30	45.95	424850	325202	
Trent0522	SHOB01_109.1	44.04	44.43	44.69	44.86	45.18	45.26	45.29	45.95	424855	325193	
Trent0523	SHOB01_101.1	44.03	44.42	44.68	44.86	45.18	45.26	45.28	45.95	424910	325128	
Trent0524	SHOB01_097.1	44.03	44.42	44.68	44.86	45.18	45.26	45.28	45.95	424948	325119	
Trent0525	SHOB01_097.2	44.02	44.42	44.68	44.86	45.18	45.26	45.28	45.95	424981	325096	
Trent0526	SHOB01_092.1	44.02	44.41	44.67	44.85	45.17	45.24	45.27	45.95	424988	325091	

Trent0527	SHOB01_092.2	44.01	44.40	44.67	44.85	45.17	45.24	45.27	45.95	425077	325080
Trent0528	SHOB01_077.1	44.00	44.40	44.66	44.84	45.15	45.23	45.25	45.94	425139	325073
Trent0529	SHOB01_077.2	44.00	44.39	44.65	44.84	45.15	45.23	45.25	45.94	425162	325069
Trent0530	SHOB01_073.1	44.00	44.39	44.65	44.83	45.15	45.22	45.25	45.94	425177	325067

<u>Defences</u>

swwm-9647 Crest levels n		evels m DD			cond rati	ition ng	Design	
Asset ID	Length, m	down- stream	up- stream	Description	Date	overall	worst	of protection
22998	268.65	45.70	45.70	Blue brick faced piled flood wall	2001	2	3	yrs 200
22875	107.69	45.48	45.85	Floodbank along Wetmore Lane.	1962	2	3	200
22876	219.21	46.61	46.60	Kwikform & gasworks blue brick floodwall	1962	2	2	200
24570	501.87	45.63	45.63	Waste water reclamation works FB.	1962	2	3	200
24571	13.81	45.75	45.75	Floodwall to builders yard. 2001 3		3	200	
24572	94.08	46.09	46.04	Piled wall brick clad on dry side200123		200		
24573	95.67	45.98	45.95	Old station yard brickwork floodwall.196222		2	200	
24352	96.67	45.70	45.70	Blue brick clad reinforced concrete flood wall 2001 2 2		2	200	
24353	24.23	45.75	45.75	Poured Concrete pile wall with blue brick facade 2001 2		2	200	
24354	74.78	45.75	45.75	New concrete poured pile floodwall, with blue brick facade	2001	2	2	200
49333	34.77	45.58	45.45	Riverside Park Earth Embankment and floodwall.	1962	3	3	100
49334	73.18	45.71	45.71	Electrical estate / Wetmore Laneconcrete wall brick clad	2001	2	2	200
64290	119.44	45.63	45.63	Sewage works Earth embankment	2007	2	2	200
				Earth embankment on Wetmore farm housing				
64135	373.62	45.67	45.67	development	2007	2	2	200
79378	387.53	45.63	45.63	Reclamation works (south) high ground/wall.	1962	3	3	200
79412	32.21	45.46	45.70	Floodbank upstream of Wetmore Lane.	2001	3	3	200
79413	144.35	45.90	45.90	High Ground - Wetmore Lane builders yard	1961	3	3	200
79414	72.41	45.31	45.57	Floodbank to builders yard.	2001	2	3	200
				Caravan Park Highground. Precast concrete on		_		
81263	282.80	45.83	45.70) embankment 1		2	3	200
81264	15.26	45.96	45.96	Masonry wall under bridge	2001	3	3	200

116048	748.13	45.78	45.83	Flood embankment adjacent to railway.	1962	3	3	200
129485	107.19	45.83	45.83	Riverside Park Earth Embankment	2007	3	3	200
178662	20.52	45.66	45.64	Wall		3	3	25

	Defence Asset Condition Rating											
Grade	Rating	Description										
1	Very Good	Cosmetic defects that will have no effect on performance										
2	Good	Minor defects that will not reduce the overall performance of the assets										
3	Fair	Defects that could reduce performance of assets										
4	Poor	Defects that would significantly reduce the performance of the asset. Further investigation required										
5	Very Poor	Severe defects resulting in complete performance failure										

Appendix D. Micro Drainage calculations. Free outfall

D.1. Free Outfall

Atkins Lto	ł								P	age 1
The Axis									L L	
10 Hollida	ay Stre	et								1,
Birminghan	n B1 1	TF								Mirm
Date 19/10)/2016	10:16		Des	signed by	DOWN	11679			
File PHASE	E 3&4 M	ASTER	MODEL	Che	ecked by				Ľ	Juniuge
Micro Drai	Lnage			Net	work 201	5.1				
	STORM	1 SEWE	r desi	<u>GN by t</u>	the Modif	ied F	Rationa	l Meth	<u>nod</u>	
		Desig	<u>n Crit</u>	eria fo	or Storm	- Fre	e outf	all		
		Pi	pe Sizes	S STANDAR	D Manhole S	Sizes S	STANDARD			
	De	turn Do	FSR Rain	nfall Mod	lel – Englar	nd and	Wales	imata Ch		°-) O
	ке	turn Pei	M5-60	(mm) 19.1	100	Add F. Min:	imum Bac	kdrop He	ange (sight (m) 0.000
	Morrim	um Daint	Rat	io R 0.4	400 100 Min Dog	Max:	imum Bac	kdrop He	ight (m) 0.000
Maximum 1	ime of C	oncentra	ation (m	ins)	30 Min Des	Vel fo:	r Auto D	esign or	ily (m/	s) 1.00
	F	oul Sewa	age (l/s	/ha) 0.0	000 Mi	n Slope	e for Op	timisati	on (1:	X) 500
	VOLUM	etric Ri	INOII CO	eii. U.	/50					
			De	signed w	ith Level S	offits				
	<u>T</u>	lime A	rea Di	agram f	for Storm	ı – Fr	ree out	fall		
			Time (mins)	Area Ti (ha) (mi	me Area ns) (ha)	Time (mins)	Area (ha)			
			0-4 0	473	4-8 0 774	8-12	0 006			
			0 - 0		- 0 0.774	0 12	0.000			
			Total 2	Area Cont	ributing (h	na) = 1	.253			
			Tota	al Pipe V	olume (m³)	= 89.04	17			
	<u>Ne</u>	twork	<u>Desigr</u>	<u>n Table</u>	for Sto	<u>rm – </u>	<u>Free o</u>	utfall		
1	PN Leng (m	(m) (th	l Slope (1:X)	I.Area (ha)	T.E. E (mins) Flow	ase (l/s)	k 1 (mm) S	HYD DIA ECT (mm	A Aut) Desi	o gn
S1.	.000 35.6	574 0.20	9 170.7	0.035	5.00	0.0	0.600	o 22	5 👌	
S1.	.001 38.6	577 0.22	8 169.6	0.075	0.00	0.0	0.600	o 30	0 💣	
S2.	.000 35.3	849 0.20	8 169.9	0.116	5.00	0.0	0.600	o 30	0 ð	
S1.	.002 16.8	812 0.09	9 169.8	0.015	0.00	0.0	0.600	o 37	5 💣	
			Ne	etwork	Results '	<u> Table</u>				
					_ =				c.	_1
PN	Rain (mm/hr)	T.C. (mins)	US/IL (m)	Σ I.Area (ha)	Σ Base Flow (l/s)	Foul (1/s)	Add Flo (1/s)	w Vel (m/s)	Cap (1/s)	Flow (l/s)
S1.000	49.74	5.60	43.748	0.035	0.0	0.0	0.	0 1.00	39.7	4.7
S1.001	47.67	6.13	43.464	0.110	0.0	0.0	0.	0 1.20	85.1	14.2
S2.000	50.18	5.49	43.444	0.116	0.0	0.0	0.	0 1.20	85.0	15.8
S1.002	46.94	6.33	43.161	0.241	0.0	0.0	0.	0 1.39	153.2	30.6
			©1 (982-201	5 XP Soli	ution	s			

Atkins Ltd											Pa	age 2	
The Axis													
10 Holliday S	Street										L L	1	
Birmingham H	31 1TF										Ν	licco	Jun
Date 19/10/20	016 10	:16		De	esigne	d by	DOWN	1679			H) Coin [.]	han
File PHASE 38	&4 MAS	ter M	IODEL	. Ch	necked	by							age
Micro Drainag	ge			Ne	etwork	2015	5.1						
	<u>Netwo</u>	ork D	esign '	Tabl	e for	Stor	m – 1	Free d	outfa	<u>all</u>			
	Tonath	T-11	01 T					1-			B to a		
PN	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)	Desig	m	
	41 211	0 040	170 0	0 0 5 0	E 0.0		0 0	0 000	_	0.0 F			
53.000	41.311	0.243	1/0.0	0.050	5.00		0.0	0.600	0	223	Ŭ		
S1.003	15.918	0.066	241.2	0.017	0.00		0.0	0.600	0	375	ഹ്		
S4.000	42.903	0.238	180.3	0.161	5.00		0.0	0.600	0	375	a		
S4.001	49.788	0.277	179.7	0.203	0.00		0.0	0.600	0	375	ĕ		
S1.004	30.091	0.094	320.1	0.025	0.00		0.0	0.600	0	450	æ		
S5.000 S5.001	18.720	0.078	240.0 244.3	0.048	5.00		0.0	0.600	0	300 300	6		
S6.000 S6.001	16.951 34.425	0.053	319.8 318.8	0.027	5.00		0.0	0.600	0	375	ð A		
00.001	011120	0.200	010.0	•••••	0.00		0.0	0.000	Ũ	0,0	U		
\$5.002	15.325	0.049	312.8	0.000	0.00		0.0	0.600	0	375	ď		
S1.005	5.639	0.016	350.0	0.014	0.00		0.0	0.600	0	450	ď		
S1.006	20.578	0.059	351.0	0.050	0.00		0.0	0.600	0	450	ď		
s7.000	17.986	0.119	151.3	0.050	5.00		0.0	0.600	0	150	െ		
\$8.000	39.870	0.266	150.0	0.150	5.00		0.0	0.600	0	225	ക്		
			Net	work	Resul	ts T	<u>able</u>						
PN Ra	ain T	.C. U	JS/IL Σ	I.Area	a ΣBa	ase	Foul	Add Fl	.ow V	/el	Cap	Flow	
(1101)	(LIIS)	(ш)	(IIA)	FIOW	(1/5)	(1/5)	(1/5)) (1	1/5/	(1/5)	(1/5)	
\$3.000 4	9.37 5	5.69 4	3.455	0.05	0	0.0	0.0	0	.0 1	.00	39.8	6.7	
s1.003 4	6.14 6	6.56 4	3.062	0.30	8	0.0	0.0	0	.0 1	.16	128.4	38.5	
\$4.000 5	0.00 5	5.53 4	3.511	0.16	1	0.0	0.0	0	.0 1	.35	148.7	21.8	
S4.001 4	7.61 0	6.15 4	3.273	0.36	4	0.0	0.0	0	.0 1	.35	148.9	46.9	
S1.004 4	4.68	7.00 4	2.921	0.69	7	0.0	0.0	0	.0 1	.13	179.8	84.3	
s5.000 5	0.94 5	5.31 4	3.127	0.04	8	0.0	0.0	0	.0 1	.01	71.4	6.6	
S5.001 5	0.54 5	5.40 4	3.049	0.14	7	0.0	0.0	0	.0 1	.00	70.8	20.1	
S6.000 5	1.06 5	5.28 4	3.112	0.02	7	0.0	0.0	0	.0 1	.01	111.3	3.7	
s6.001 4	8.74 5	5.85 4	3.059	0.02	7	0.0	0.0	0	.0 1	.01	111.5	3.7	
\$5.002 4	7.79 6	5.10 4	2.951	0.17	4	0.0	0.0	0	.0 1	.02	112.6	22.5	
S1.005 4	4.40	7.09 4	2.827	0.88	5	0.0	0.0	Ω	.0 1	.08	171.9	106.4	
s1.006 4	3.43	7.41 4	2.811	0.93	5	0.0	0.0	0	.0 1	.08	171.7	110.0	
s7.000 5	0.69 5	5.37 4	3.420	0.05	0	0.0	0.0	0	.0 0	.81	14.4	6.9	
1													

Atkins	s Ltċ	1											P	age 3	
The Az	xis												ſ		
10 Ho	llida	ny S	tree	t									2	L	
Birmin	ngham	ι B	1 1T	F									R	Aicco	سر
Date 2	19/10	/20	16 1	0:16		De	signe	d by	DOWN	1679			H		
File 1	PHASE	3&	4 MA	STER	MODEL.	Ch	ecked	by						JI dii ic	IYE
Micro	Drai	nag	e			Ne	twork	201	5.1						
			Net	work	Design	Table	e for	Stor	rm – 1	Free	outf	Eall			
	F	PN	Lengt	h Fall	Slope	I.Area	T.E.	Ba	ase	k (mm)	HYD		Aut	0	
			(111)	(111)	(1.7)	(IIA)	(11115)	FIOW	(1/5)	(11011)	SECI	. (11111)	Dest	9 11	
	S8.	001	36.28	0 0.18	1 200.2	0.050	0.00		0.0	0.600	C	225	6		
	S1.	007	39.24	4 0.08	7 451.1	0.000	0.00		0.0	0.600	c	525	A		
	S1.	800	14.64	9 0.02	9 505.1	0.068	0.00		0.0	0.600	_	1050	ំ សំ		
	S1.	009	7.30	0 0.01	8 405.6	0.000	0.00		0.0	0.600	C	450	ð		
	SI.	010	9.30	/ 0.02	3 404.6	0.000	0.00		0.0	0.600	C	9 450	ď		
					Ne	twork	Resu	lts I	able						
	DN	D - 1		T C	110/77				Eess 1	744 F	1	We 1	0	F)	
	PN	Rai (mm/	ın hr) (T.C. mins)	(m)	E I.Area (ha)	ΣB Flow	ase (1/s)	Foul (1/s)	Add F. (1/s	LOW ;) (vel (m/s)	Cap (1/s)	Flow (1/s)	
	0 0 0 1	4.7	1.0	c 00	42.024									05 5	
S	8.001	4 /	.12	6.28	43.234	0.200		0.0	0.0		0.0	0.92	36.6	25.5	
S	1.007	41	.66	8.03	42.752	1.185		0.0	0.0	(0.0	1.05	226.9	133.7	
S	1.008	41	.14	8.23	42.665	1.253		0.0	0.0		0.0	1.25	394.5	139.6	
S	1.010	40	.02 .43	8.50	42.638	1.253		0.0	0.0		0.0	1.00	159.8	139.6	
					©19	82-201	5 XP	Solu	ition	s					

Atkins Ltd		Page 4
The Axis		
10 Holliday Street		Y.
Birmingham B1 1TF		Micco
Date 19/10/2016 10:16	Designed by DOWN1679	
File PHASE 3&4 MASTER MODEL	Checked by	Diamaye
Micro Drainage	Network 2015.1	

Manhole Schedules for Storm - Free outfall

MH Name	MH CL (m)	MH Depth (m)	Coni	MH nection	MH Diam.,L*W (mm)	PN	Pipe O Inver Level)ut :t (m)	Diameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	45.373	1.625	Open	Manhole	1200	S1.000	43.	748	225				
s2	45.164	1.700	Open	Manhole	1200	s1.001	43.4	464	300	s1.000	43.539	225	
S3	45.300	1.856	Open	Manhole	1200	s2.000	43.4	444	300				
S4	45.000	1.839	Open	Manhole	1350	s1.002	43.3	161	375	s1.001	43.236	300	
										s2.000	43.236	300	
S5	45.080	1.625	Open	Manhole	1200	s3.000	43.4	455	225				
S6	45.000	1.938	Open	Manhole	1350	S1.003	43.0	062	375	S1.002	43.062	375	
										s3.000	43.212	225	
s7	45.286	1.775	Open	Manhole	1500	S4.000	43.	511	375				
S8	45.020	1.747	Open	Manhole	1500	S4.001	43.2	273	375	S4.000	43.273	375	
S9	45.000	2.079	Open	Manhole	1500	S1.004	42.9	921	450	S1.003	42.996	375	
										S4.001	42.996	375	
S10	44.827	1.700	Open	Manhole	1200	s5.000	43.3	127	300				
S11	44.749	1.700	Open	Manhole	1200	S5.001	43.0	049	300	S5.000	43.049	300	
S12	45.380	2.268	Open	Manhole	1500	S6.000	43.3	112	375				
S13	45.100	2.041	Open	Manhole	1500	S6.001	43.0	059	375	S6.000	43.059	375	
S14	44.726	1.775	Open	Manhole	1500	S5.002	42.9	951	375	S5.001	43.026	300	
										S6.001	42.951	375	
S15	44.677	1.850	Open	Manhole	1500	S1.005	42.8	827	450	S1.004	42.827	450	
										S5.002	42.902	375	
S17	44.659	1.848	Open	Manhole	1500	S1.006	42.8	811	450	S1.005	42.811	450	
S21	44.920	1.500	Open	Manhole	1200	S7.000	43.4	420	150				
S19	45.000	1.500	Open	Manhole	1200	S8.000	43.5	500	225				
S20	44.940	1.706	Open	Manhole	1200	S8.001	43.2	234	225	S8.000	43.234	225	
S18	44.950	2.198	Open	Manhole	1500	S1.007	42.7	752	525	S1.006	42.752	450	
										S7.000	43.301	150	174
										S8.001	43.053	225	1
S22	44.900	2.235	Open	Manhole	1500	S1.008	42.0	665	1050	S1.007	42.665	525	
S23	44.900	2.264	Open	Manhole	1500	S1.009	42.0	636	450	S1.008	42.636	1050	
S24	44.900	2.282	Open	Manhole	1500	S1.010	42.0	618	450	S1.009	42.618	450	
S25	44.643	2.048	Open	Manhole	1350		OUTFA	ALL		S1.010	42.595	450	

Atkins	s Ltd											Page	5
The Az	xis												
10 Ho	lliday	y Stre	et									4	
Birmin	ngham	B1 1	TF									Micc	Jun
Date	19/10/	/2016	10:16			Desi	aned b	DV DOW	N1679				U
File	PHASE	3£4 M	ASTER	MOD	ET.	Chec	ked by	,				Drair	nage
Micro	Drair			1100		Notw	$\frac{1}{2}$	/)15 1					
MICIO	DIAII	laye				Netw	OIK 20)13.1					
			Are	a Suu	mmarv	for S	Storm	- Free	outf	Fall			
			<u>111 0</u>	u bu	iuniar y	101 0	JUULIN	1100					
			Pipe	PIMP	PIMP PI	MP 0	Gross	Imp.	Pip	e Total			
			Number	Туре	Name (%) Are	ea (ha)	Area (h	.a)	(ha)			
			1.000	_	- 1	.00	0.035	0.0	35	0.035			
			1.001	-	- 1	00	0.075	0.0	75	0.075			
			2.000	-	- 1	00	0.116	0.1	16	0.116			
			1.002	-	- 1	.00	0.015	0.0	15	0.015			
			3.000	-	- 1	00	0.050	0.0	30 17	0.050			
			4.000	_	- 1	00	0.161	0.0	÷ ′ 61	0.161			
			4.001	-	- 1	.00	0.203	0.2	03	0.203			
			1.004	-	- 1	00	0.025	0.0	25	0.025			
			5.000	-	- 1	00	0.048	0.0	48	0.048			
			5.001	-	- 1	.00	0.099	0.0	99	0.099			
			6.000	_	- 1	00	0.027	0.0	27	0.027			
			5.002	_	- 1	00	0.000	0.0	00	0.000			
			1.005	-	- 1	.00	0.014	0.0	14	0.014			
	1.006					00	0.050	0.0	50	0.050			
	7.000					00	0.050	0.0	50	0.050			
	8.000					.00	0.150	0.1	50	0.150			
	8.001 -				- 1	.00	0.050	0.0	50	0.050			
			1.008	_	- 1	00	0.068	0.0	68	0.068			
			1.009	-	- 1	.00	0.000	0.0	00	0.000			
			1.010	-	- 1	00	0.000	0.0	00	0.000			
							Total	Tot	al	Total			
							1.253	1.2	53	1.253			
		Surch	argod	O_{11}	fall r	notail	ls for	Storm	ו – די		+f211		
		<u>bur cn</u>	argeu	ouc.		CCULI	10 101	DCOIN		<u></u>	CIUII		
			Outfall	L Ou	tfall C	. Leve	l I. Le	vel M	lin	D,L W	r		
		Pi	pe Numb	ber 1	Name	(m)	(m)) I.	Level	(mm) (mr	n)		
									(m)				
			S1.(010	S25	44.64	3 42.	595	0.000	1350	0		
				Л	atum (m	0 000		t (mina)	0				
				D	acun (m	0.000	0 01136	c (milis)	0				
	N 1		.	.									
Time (mins)	Depth (m)	TIME (mins)	uepth (m)	Time (mins) (m)	(mins) (m)	(mins)	uepth (m)	(mins)	uepth (m)	(mins)	uepth (m)
	,,		, <i>,</i>	,					,,		,,	,	/
	0.000	12	0.000	2	3 0.000	3	4 0.000	45	0.000	56	0.000	67	0.000
2	0.000	1/	0.000	2	4 U.UUU 5 0 000	3	5 0.000	46	0.000	57	0.000	68 20	0.000
4	0.000	15	0.000	2	6 0.000	3	7 0.000	48	0.000	59	0.000	70	0.000
5	0.000	16	0.000	2	7 0.000	3	8 0.000	49	0.000	60	0.000	71	0.000
6	0.000	17	0.000	2	8 0.000	3	9 0.000	50	0.000	61	0.000	72	0.000
7	0.000	18	0.000	2	9 0.000	4	0 0.000	51	0.000	62	0.000	73	0.000
8	0.000	19	0.000	3	U U.000	4	1 0.000	52	0.000	63	0.000	74	0.000
10	0.000	20	0.000	3	1 0.000 2 0.000	4	3 0.000	54	0.000	65	0.000	76	0.000
11	0.000	22	0.000	3	3 0.000	4	4 0.000	55	0.000	66	0.000	77	0.000
	I												
				(©1982-	2015	XP So	lution	IS				
L													

Atkins	s Ltd											Page	61
The Az	kis												
10 Hol	Lliday	/ Stre	et									4	-
Birmir	ngham	B1 1	ΤF									Micc	Jun
Date 1	L9/10/	/2016	10:16			Design	ned b	y DOWN	11679				סמרנ
File H	PHASE	3&4 M	ASTER	MODE	L	Checke	ed by					DIGII	laye
Micro	Drair	nage				Netwo	rk 201	15.1				1	
		Surch	arged	Outfa	all D	etails	for	Storm	- Fr	ee out	tfall		
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)
((,	((,	((,	((/	((/	((,	((,
20098	0.000	20107	0.000	20116	0.000	20125	0.000	20134	0.000	20143	0.000	20152	0.000
20099	0.000	20108	0.000	20117	0.000	20120	0.000	20135	0.000	20144	0.000	20153	0.000
20101	0.000	20110	0.000	20119	0.000	20128	0.000	20137	0.000	20146	0.000	20155	0.000
20102	0.000	20111	0.000	20120	0.000	20129	0.000	20138	0.000	20147	0.000	20156	0.000
20103	0.000	20112	0.000	20121	0.000	20130	0.000	20139	0.000	20148	0.000	20157	0.000
20104	0.000	20113	0.000	20122	0.000	20131	0.000	20140	0.000	20149	0.000	20158	0.000
20105	0.000	20114	0.000	20123	0.000	20132	0.000	20141	0.000	20150	0.000	20159	0.000
20100	0.000	20110	0.000	20121	0.000	20100	0.000	20112	0.000	20101	0.000	20100	0.000
		Si	imulat	cion C	riter	<u>tia fo</u> :	r Sto	rm - E	ree d	outfal	1		
	Volumetric Runoff Coeff 0.750 Additional Flow - % of Total Flow 0.000 Areal Reduction Factor 1.000 MADD Factor * 10m ³ /ha Storage 0.000 Hot Start (mins) 0 Inlet Coefficcient 0.800 Hot Start Level (mm) 0 Flow per Person per Day (1/per/day) 0.000 Manhole Headloss Coeff (Global) 0.500 Run Time (mins) 60 Foul Sewage per hectare (1/s) 0.000 Output Interval (mins) 1												
Number Numk	of Ing	put Hyd: Online (rograph Control	s 0 1 s 1 Nur	Number nber of	of Offl Storag	ine Cor e Struc	ntrols ctures :	0 Numbe 1 Numbe	er of Ti er of Re	ime/Are eal Tim	a Diagr e Contr	ams O ols O
				<u>Syn</u>	theti	.c Raiı	nfall	Detai	ls				
	F	F Return F	Rainfal Period M5-	l Model (years) Region 60 (mm) Ratio R	Engla	nd and 7 19 (FSR 1 Wales 0.100 S 0.400	torm Du	Profi Cv (Cv (ration	le Type Summer) Winter) (mins)	Summe: 0.75(0.84(3)		
				C	1982-	2015 X	P Sol	ution	S				

Atkins Ltd					Page 62
The Axis					
10 Holliday Street					L'
Birmingham B1 1TF					Micco
Date 19/10/2016 10:1	6	Designed b	by DOWN1679		
File PHASE 3&4 MASTE	R MODEL	Checked by	Z		Diamaye
Micro Drainage		Network 20)15.1		
<u>Onl:</u> <u>Hydro-Brake Optir</u>	ine Controls num® Manhole Unit Desig Design	s for Storr e: S24, DS, c Reference MI gn Head (m) Flow (1/s) Flush-Flo [™] Objective M	<u>n - Free out:</u> / <u>PN: S1.010,</u> D-SHE-0128-8800- C Minimise upstrea	<u>fall</u> <u>Volume (m</u> 1600-8800 1.600 8.8 alculated m storage	<u>∿³): 5.0</u>
	Dia Invert	ameter (mm) - Level (m)		128 42.618	
Minimum (Dutlet Pipe Dia	ameter (mm)		150	
Suggest	ed Manhole Dia	ameter (mm)		1200	
Control Points	Head (m) Flow	w (l/s)	Control Points	Head (m	a) Flow (l/s)
Design Point (Calculated)	1 600	8 7	Kick-	-Flor 0.97	4 6 9
Flush-Flo	∞ 0.468	8.7 Mean	Flow over Head F	lige 0.97	- 7.6
The hydrological calcula Hydro-Brake Optimum® as Brake Optimum® be utilis	ations have bee specified. Sh sed then these	en based on th hould another storage routi	e Head/Discharge type of control ng calculations	e relationshi device other will be inva	p for the than a Hydro- lidated
Depth (m) Flow (l/s)	Depth (m) Flor	w (l/s) Depth	(m) Flow (1/s)	Depth (m) F	low (1/s)
0.100 4.6	1.200	7.6 3	.000 11.7	7.000	17.6
0.200 7.7	1.400	8.2 3	.500 12.6	7.500	18.2
0.400 8.6	1.800	9.2 4	.500 13.5	8.500	18.8
0.500 8.7	2.000	9.7 5	.000 15.0	9.000	19.8
0.600 8.6	2.200	10.1 5	.500 15.7	9.500	20.4
1.000 7.0	2.600	11.0 6	.500 17.0		
	©1982-	-2015 XP So	lutions		

Atkins Ltd		Page 63
The Axis		
10 Holliday Street		<u>Y</u>
Birmingham B1 1TF		Micro
Date 19/10/2016 10:16	Designed by DOWN1679	
File PHASE 3&4 MASTER MODEL	Checked by	Diamaye
Micro Drainage	Network 2015.1	

Storage Structures for Storm - Free outfall

Tank or Pond Manhole: S24, DS/PN: S1.010

Invert Level (m) 42.618

Depth (m)	Area (m²)						
0.000	370.0	1.000	660.0	1.001	826.0	1.800	1020.0

Atkins	Ltd								Page	64
The Ax	is									
10 Hol	liday	/ S	treet						4	.
Birmin	gham	В	1 1TF							Ym
Date 1	9/10/	20	16 10:	16		Designed b	DV DOWN1679			
Filo P	UNCE	30	1 MAG	·⊥· rfr Mo		Checked by	7		Drai	nage
Miama	Desir	50		LEK MO		Network 20	2			
Micro	Drair	lag	e			Network 20)15.1			
Summa	ary o	<u>f (</u>	Critic	<u>al Res</u>	ults b	y Maximum 1 outfall	Level (Rank	1) for 9	Storm -	Free
Number Numb	Manhol Foul of Inj er of (e H Se out Onl:	Areal Re Hot St eadloss wage per Hydrogr ine Cont	eduction ot Start cart Lev Coeff (c hectar caphs 0 crols 1	<u>Si</u> Factor (mins) rel (mm) Global) re (l/s) Number Number c	mulation Crit. 1.000 Addit 0 M 0.500 Flow pe 0.000 c of Offline Co of Storage Stru	eria ional Flow - % ADD Factor * 10 Inlet r Person per Da ontrols 0 Numbe actures 1 Numbe	of Total F Dm ³ /ha Stor Coeffieci ay (l/per/d er of Time/ er of Real	(low 0.000 age 0.000 ent 0.800 (ay) 0.000 (Area Diag Time Cont	rams O rols O
			Ra	infall I	<u>Synth</u> Model	etic Rainfall FS	<u>Details</u> R Batio B	0.400		
			na	Re	egion En	gland and Wale	s Cv (Summer)	0.750		
				M5-60	(mm)	19.10	0 Cv (Winter)	0.840		
		Мат	rgin for	Flood	Risk War	ning (mm)		30(0.0	
			-9	11000	Analysis	Timestep 2.5	Second Increme	nt (Extende	ed)	
					D	IS Status		(OFF	
					D' Inert	VD Status ia Status			ON	
					INCIC	La beacab			011	
							_			
			Duratic	Profil	e(s) ins) 15	. 30. 60. 120.	S 180, 240, 360	ummer and V . 480. 600.	Winter 720.	
			Daraoro		2110) 10 96	0, 1440, 2160,	2880, 4320, 5	760, 7200,	8640,	
	Det		. Devided	(>			1 20	10080	
	Rei	curi	n Period Climate	(s) (ye Change	ars) (%)			1, 30 0,	0, 20	
				2						
										Weter
	US/MH			Return	Climate	First (X)	First (Y)	First (Z)	Overflow	Level
PN	Name	:	Storm	Period	Change	Surcharge	Flood	Overflow	Act.	(m)
g1 000	01	1 ⊑	Winter	100	+200	100/15 8				11 020
s1.000	S1 S2	15 15	Winter	100	+20%	30/15 Winter				44.906
S2.000	S3	15	Winter	100	+20%	30/15 Winter				44.905
S1.002	S4	15	Winter	100	+20%	30/15 Summer				44.806
S3.000	S5 96	15	Winter Winter	100	+20% +20%	30/15 Winter				44.758 44.701
S4.000	S7	15	Winter	100	+20%	100/15 Summer				44.968
S4.001	S8	15	Winter	100	+20%	30/15 Winter				44.850
S1.004	S9	15	Winter	100	+20%	30/15 Summer				44.611
S5.000	S10 911	15	Winter Winter	100	+20% +20%	30/15 Summer				44.464 44 451
s6.000	S11 S12	15	Winter	100	+20%	30/15 Summer				44.444
S6.001	S13	15	Winter	100	+20%	30/15 Summer				44.440
S5.002	S14	15	Winter	100	+20%	30/15 Summer				44.436
S1.005	S15	15 15	Winter	100	+20% +20%	30/15 Summer				44.384
S7.000	S17 S21	15	Winter	100	+20%	30/15 Summer				44.047
S8.000	S19	15	Winter	100	+20%	30/15 Summer	100/15 Summer			45.002
S8.001	S20	15	Winter	100	+20%	30/15 Summer				44.573
S1.007	S18	15	Winter	100	+20%	30/15 Summer	2			43.859
					©1982-	-2015 XP So	Lutions			

Atkins Ltd								Page 65
The Axis								
10 Holliday S	treet	-						Y L
Birmingham E	81 1TE	r.						Misco
Date 19/10/20	16 10):16	Γ	Designe	ed by DC	WN16	79	
File PHASE 3&	4 MAS	STER MODE	L (Checked	lbv			Urainage
Micro Drainao				Jetwork	· 2015 1			
			1	IC CWOIN	2010.1	-		
Summary of (Criti	cal Resul	ts by	Maximi	ım Level	(Rai	nk 1) for	Storm - Free
<u></u>				outfa	11	(1.0.		
		Surcharged	Flooded	L		Pipe		
	US/MH	Depth	Volume	Flow /	Overflow	Flow		Level
PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded
S1.000	S1	0.965	0.000	0.40		14.8	SURCHARGED	
S1.000	S2	1.142	0.000	0.58		45.5	FLOOD RISK	
S2.000	S3	1.161	0.000	0.62		48.2	SURCHARGED	
S1.002	S4	1.270	0.000	0.67		82.4	FLOOD RISK	
S3.000 S1 003	S5 S6	1.078	0.000	0.52		19.5	SURCHARGED	
S1.003	S7	1.082	0.000	0.48		64.9	SURCHARGED	
S4.001	S8	1.202	0.000	1.08		148.1	FLOOD RISK	
S1.004	S9	1.240	0.000	1.59		246.2	SURCHARGED	
S5.000 S5.001	S10 S11	1.037	0.000	0.29		17.8 64 1	SURCHARGED	
S6.000	S11	0.957	0.000	0.10		9.1	SURCHARGED	
S6.001	S13	1.006	0.000	0.15		15.1	SURCHARGED	
\$5.002	S14	1.110	0.000	0.50		44.9	FLOOD RISK	
S1.005	S15	1.107	0.000	2.54		286.5	FLOOD RISK	
s7.000	S21	0.477	0.000	1.75		23.6	SURCHARGED	
S8.000	S19	1.277	2.300	1.46		58.8	FLOOD	3
S8.001	S20	1.114	0.000	2.26		78.2	SURCHARGED	
S1.007	S18	0.582	0.000	1.93		381.0	SURCHARGED	

Atkins I	Ltd								Pag	re 66
The Axi:	S									
10 Holl:	iday	Street							4	~
Birming	ham i	B1 1TF							Mi	
Date 19	/10/2	016 10:10	5]	Designe	d by DC	WN167	79		ainago
File PHZ	ASE 3	&4 MASTER	R MODE	L	Checked	l by				amaye
Micro D:	raina	ge]	Network	2015.1	-			
<u>Summar</u>	y of	<u>Critical</u>	Resul	ts by	Maximu	<u>ım Level</u>	. (Rar	<u>nk 1) for</u>	Storm	- Free
					<u>outia</u>	<u>L L</u>				
										Water
-	US/MH		Return	Climate	e First	(X) Fi	rst (Y)	First (Z)	Overflow	Level
PN	Name	Storm	Period	Change	Surch	arge 1	Flood	Overilow	Act.	(m)
S1.008	S22	480 Winter	100	+20	8					43.668
S1.009 S1.010	S23 S24	480 Winter 480 Winter	100 100	+205	% 30/15 £ % 30/30 №	Summer Ninter				43.668 43.666
				. 2 3						
		e	charged	Flooder	4		Dino			
		US/MH I	epth	Volume	Flow /	Overflow	Flow		Level	
	PN	Name	(m)	(m³)	Cap.	(1/s)	(l/s)	Status	Exceeded	
	S1.008	S22	-1.232	0.000	0.04		69.6	OK		
	S1.009	S23	0.582	0.000	0.70		67.8	SURCHARGED		
	S1.010	S24	0.598	0.000	0.09		8.7	SURCHARGED		
			C	1982-2	2015 XP	Soluti	ons			
ι										

D.2. Surcharged Outfall

Atkins Ltd		Page 1								
The Axis										
10 Holliday Street		L'								
Birmingham B1 1TF		Micro								
Date 19/10/2016 09:16	Designed by DOWN1679	Dcainago								
File PHASE 3&4 MASTER MODEL	. Checked by	Diginarie								
Micro Drainage	Network 2015.1	·								
<u>STORM SEWER DESIGN</u> <u>Design Criteria</u>	STORM SEWER DESIGN by the Modified Rational Method Design Criteria for Storm - Surcharged outfall									
Pipe Sizes :	TANDARD Manhole Sizes STANDARD									
FSR Rainf Return Period (year M5-60 (m	ll Model - England and Wales) 1 Add Flow / Climate Chan) 19.100 Minimum Backdrop Heig	nge (%) 0 ght (m) 0.000								
Ratio	R 0.400 Maximum Backdrop Heig	ght (m) 0.000								
Maximum Rainfall (mm/n Maximum Time of Concentration (min) 100 Min Design Depth for Optimisati 30 Min Vel for Auto Design only 	on (m) 0.000 7 (m/s) 1.00								
Foul Sewage (1/s/h) 0.000 Min Slope for Optimisation	n (1:X) 500								
Volumetric Runoff Coef	. 0.750									
Desi	gned with Level Soffits									
<u>Time Area Diagrar</u>	for Storm - Surcharged outfall									
Time Ar (mins) (h	a Time Area Time Area									
(, (, (, (,									
0-4 0.4	73 4-8 0.774 8-12 0.006									
Total Ar	a Contributing (ha) = 1.253									
Total	Pipe Volume (m³) = 89.049									
	-									
<u>Network Design Tab</u>	<u>e for Storm - Surcharged outfal</u>	<u>11</u>								
PN Length Fall Slope I	Area T.E. Base k HYD DIA	Auto								
(m) (m) (1:X)	(ha) (mins) Flow (l/s) (mm) SECT (mm)	Design								
s1.000 35.674 0.209 170.7	0.035 5.00 0.0 0.600 o 225	ð								
S1.001 38.677 0.228 169.6	0.075 0.00 0.0 0.600 o 300	ď								
S2.000 35.349 0.208 169.9	0.116 5.00 0.0 0.600 o 300	8								
S1.002 16.812 0.099 169.8	0.015 0.00 0.0 0.600 o 375	ď								
Net	vork Results Table									
PN Rain T.C. US/IL Σ (mm/hr) (mins) (m)	.Area Σ Base Foul Add Flow Vel ha) Flow (l/s) (l/s) (l/s) (m/s) (Cap Flow l/s) (l/s)								
s1.000 49.74 5.60 43.748	0.035 0.0 0.0 0.0 1.00	39.7 4.7								
s1.001 47.67 6.13 43.464	0.110 0.0 0.0 0.0 1.20	85.1 14.2								
S2.000 50.18 5.49 43.444	0.116 0.0 0.0 0.0 1.20	85.0 15.8								
S1.002 46.94 6.33 43.161	0.241 0.0 0.0 0.0 1.39 1	53.2 30.6								
©1 98	2-2015 XP Solutions									

Atkins Ltd											Pa	age 2	
The Axis													
10 Hollida	y Stree	et									2	۱.	
Birmingham	- B1 11	ΓF										Y	m
Date 19/10	/2016 (9.16		De	signed	d by	DOWN	1679			- N	licio	
File PHASE	3 £ / MZ	VSULS V		Ch	ockod	hv	Down	10,9				Iraina	9DE
Micro Drai	724 III		100001	· On	twork	201	5 1						
MICIO DIAL	llaye			Ne	LWOIK	201.	J.I						
	Notwor	k Dosi	an Tab	lo fo	r sto	rm -	Sur	- h - r a		1+ f >	11		
	Networ	K DEST	.gii tap.		JI SLU		SUL	JIIarye		JULA	<u></u>		
P	N Lengt	h Fall	Slope I	.Area	T.E.	Ba	ise	k	HYD	DIA	Auto)	
	(m)	(m)	(1:X)	(ha)	(mins)	Flow	(1/s)	(mm)	SECT	(mm)	Desig	n	
G 2	000 41 21	1 0 040	170 0	0.050	E 0.0		0 0	0 0 0		0.0 F			
53.	000 41.31	LI U.243	1/0.0 0	J.050	5.00		0.0	0.600	0	225	Ŭ		
S1.	003 15.91	L8 0.066	241.2 (0.017	0.00		0.0	0.600	0	375	ഗ്		
	000 40 00		100 0	0 1 6 1	F 0.0		0 0	0 600		275			
S4. S4.	000 42.90 001 49.78	38 0.238	179.7 (J.161 J.203	5.00		0.0	0.600	0	375	ŭ A		
01.	001 19.70		110.1	.200	0.00		0.0	0.000	0	0,0	U		
S1.	004 30.09	91 0.094	320.1 (0.025	0.00		0.0	0.600	0	450	ക്		
25	000 10 70	0 0 070	240 0 0	010	5 00		0 0	0 600	0	300	9		
s5.	000 18.72	20 0.073	240.0 ().048	0.00		0.0	0.600	0	300	U A		
S6.	000 16.95	51 0.053	319.8 (0.027	5.00		0.0	0.600	0	375	ð		
56.	001 34.42	25 0.108	318.8 (J.000	0.00		0.0	0.600	0	3/5	ď		
S5.	002 15.32	25 0.049	312.8	0.000	0.00		0.0	0.600	0	375	ന്		
											-		
S1.	005 5.63 006 20 55	39 0.016 78 0 059	350.0 (0.014	0.00		0.0	0.600	0	450 450	ന്		
51.	000 20.51	0.000	331.0	5.050	0.00		0.0	0.000	0	450	0.		
s7.	000 17.81	L8 0.119	149.9 (0.050	5.00		0.0	0.600	0	150	ď		
C 8	000 39 9/	15 0 266	150 3 (1 1 5 0	5 00		0 0	0 600	0	225	0		
50.	000 55.54	15 0.200	100.0	5.130	5.00		0.0	0.000	0	223	0.		
			Net	work	Resul	ts T	<u>able</u>						
PN	Rain	т.с. т	JS/IL E :	I.Area	ΣBa	ise	Foul	Add Fl	.ow V	'el	Cap	Flow	
	(mm/hr)	(mins)	(m)	(ha)	Flow ((l/s)	(l/s)	(1/s) (n	l/s)	(l/s)	(l/s)	
\$3.000	49.37	5.69 4	3.455	0.050		0.0	0.0	0	.0 1	.00	39.8	6.7	
20.000	10.07	0.00	0.100	0.000		0.0	0.0	Ũ	•• -		0.0.0	0.7	
S1.003	46.14	6.56 4	3.062	0.308		0.0	0.0	C	.0 1	.16	128.4	38.5	
\$4 000	50 00	5 5 7 /	3.511	0 161		0 0	0 0	n	.0 1	35	148 7	21 R	
S4.000	47.61	6.15 4	3.273	0.364		0.0	0.0	0	.0 1	.35	148.9	46.9	
S1.004	44.68	7.00 4	2.921	0.697		0.0	0.0	C	.0 1	.13	179.8	84.3	
S5.000	50.94	5.31 4	3.127	0.048		0.0	0.0	C	.0 1	.01	71.4	6.6	
S5.001	50.54	5.40 4	3.049	0.147		0.0	0.0	C	.0 1	.00	70.8	20.1	
	E1 0C	E 00 4	2 110	0 007		0 0	~ ~	~	0 1	0.1	111 2		
S6.000 S6.001	51.U6 48.74	5.28 4	3.059	0.027		0.0	0.0	0	1.0 1	.01	111.5	3.7 3.7	
20.001		2.00 1				5.0	0.0	0	1				
\$5.002	47.79	6.10 4	2.951	0.174		0.0	0.0	C	.0 1	.02	112.6	22.5	
91 00F	41 10	7 00 4	2 827	U Sor		0 0	0 0	0	0 1	U S ·	171 0	106 /	
S1.005	43.43	7.41 4	2.811	0.935		0.0	0.0	0	.0 1	.08	171.7	110.0	
									_			_	
s7.000	50.71	5.36 4	3.420	0.050		0.0	0.0	C	.0 0	.82	14.5	6.9	
S8.000	49.62	5.63 4	3.500	0.150		0.0	0.0	C	.0 1	.06	42.3	20.2	
1													

The Avis	
10 Holliday Street	_
Birmingham B1 1TF	J
Date 19/10/2016 09:16 Designed by DOWN1679	
File PHASE 3&4 MASTER MODEL Checked by	naye
Micro Drainage Network 2015.1	
<u>Network Design Table for Storm - Surcharged outfall</u>	
PN Length Fall Slope I.Area T.E. Base k HYD DIA Auto	
(m) (m) (1:X) (ha) (mins) Flow (1/S) (mm) SECT (mm) Design	
s8.001 36.378 0.181 200.8 0.050 0.00 0.0 0.600 o 225 💣	
S1 007 39 244 0 087 451 1 0 000 0 00 0 0 0 600 0 525 A	
s1.008 14.649 0.029 505.1 0.068 0.00 0.0 0.600 _ 1050	
s1.009 7.287 0.018 404.8 0.000 0.00 0.0 0.600 o 450 🁸	
s1.010 9.307 0.023 404.7 0.000 0.00 0.0 0.600 o 450 💣	
Network Results Table	
	_
PN Rain T.C. US/IL Σ I.Area Σ Base Foul Add Flow Vel Cap Flo (mm/hr) (mins) (m) (ha) Flow (l/s) (l/s) (l/s) (m/s) (l/s) (l/s)	w ;)
	/
\$8.001 47.11 6.29 43.234 0.200 0.0 0.0 0.92 36.5 25.	5
s1.007 41.66 8.03 42.752 1.185 0.0 0.0 0.0 1.05 226.9 133.	7
s1.008 41.14 8.23 42.665 1.253 0.0 0.0 0.0 1.25 394.5 139.	6
\$1.009 40.82 8.35 42.636 1.253 0.0 0.0 1.00 159.7 139.	6
S1.010 40.43 8.50 42.618 1.253 0.0 0.0 0.0 1.00 159.7 139.	6
©1982-2015 XP Solutions	

Atkins Ltd		Page 4
The Axis		
10 Holliday Street		Y.
Birmingham B1 1TF		Micco
Date 19/10/2016 09:16	Designed by DOWN1679	
File PHASE 3&4 MASTER MODEL	Checked by	Diamaye
Micro Drainage	Network 2015.1	

Manhole Schedules for Storm - Surcharged outfall

MH Name	MH CL (m)	MH Depth (m)	Conn	MH ection	MH Diam.,L*W (mm)	PN	Pipe O Inver Level (ut t D (m))iameter (mm)	PN	Pipes In Invert Level (m)	Diameter (mm)	Backdrop (mm)
S1	45.373	1.625	Open	Manhole	1200	S1.000	43.7	748	225				
s2	45.164	1.700	Open i	Manhole	1200	S1.001	43.4	464	300	S1.000	43.539	225	
s3	45.300	1.856	Open 1	Manhole	1200	s2.000	43.4	144	300				
S4	45.000	1.839	Open 1	Manhole	1350	s1.002	43.1	L61	375	S1.001	43.236	300	
			-							S2.000	43.236	300	
S5	45.080	1.625	Open 1	Manhole	1200	s3.000	43.4	155	225				
S6	45.000	1.938	Open 1	Manhole	1350	s1.003	43.0	062	375	S1.002	43.062	375	
										s3.000	43.212	225	
S7	45.286	1.775	Open 1	Manhole	1500	S4.000	43.5	511	375				
S8	45.020	1.747	Open 1	Manhole	1500	S4.001	43.2	273	375	S4.000	43.273	375	
S9	45.000	2.079	Open 1	Manhole	1500	S1.004	42.9	921	450	S1.003	42.996	375	
										S4.001	42.996	375	
S10	44.827	1.700	Open 1	Manhole	1200	S5.000	43.1	L27	300				
S11	44.749	1.700	Open 1	Manhole	1200	S5.001	43.0)49	300	S5.000	43.049	300	
S12	45.380	2.268	Open 1	Manhole	1500	S6.000	43.1	L12	375				
S13	45.100	2.041	Open 1	Manhole	1500	S6.001	43.0)59	375	S6.000	43.059	375	
S14	44.726	1.775	Open 1	Manhole	1500	S5.002	42.9	951	375	S5.001	43.026	300	
										S6.001	42.951	375	
S15	44.677	1.850	Open 1	Manhole	1500	S1.005	42.8	327	450	S1.004	42.827	450	
										S5.002	42.902	375	
S17	44.659	1.848	Open 1	Manhole	1500	S1.006	42.8	311	450	S1.005	42.811	450	
S21	44.920	1.500	Open 1	Manhole	1200	S7.000	43.4	120	150				
S19	45.000	1.500	Open 1	Manhole	1200	S8.000	43.5	500	225				
S20	44.940	1.706	Open 1	Manhole	1200	S8.001	43.2	234	225	S8.000	43.234	225	
S18	44.950	2.198	Open 1	Manhole	1500	S1.007	42.7	752	525	S1.006	42.752	450	
										S7.000	43.301	150	174
										S8.001	43.053	225	1
S22	44.900	2.235	Open 1	Manhole	1500	S1.008	42.6	565	1050	S1.007	42.665	525	
S23	44.900	2.264	Open 1	Manhole	1500	S1.009	42.6	536	450	S1.008	42.636	1050	
S24	44.900	2.282	Open 1	Manhole	1500	S1.010	42.6	518	450	S1.009	42.618	450	
S25	44.643	2.048	Open 1	Manhole	1350		OUTFA	ALL		S1.010	42.595	450	

Atkins Ltd									Pa	age 5
The Axis										
10 Holliday St	creet								2	
Birmingham Bi	l 1TF									Alecco
Date 19/10/202	L6 09:16		I	Desia	ned b	V DOWN1	679			
File PHASE 364	1 MASTER	MODEL.		[°] heck	ed by					Jrainage
Micro Drainag			<u>ין ייי</u> ז		rk 20	15 1				3
MICIO DIAINAGE	5		1	Netwo	IK ZU	13.1				
	Aroa Su	mmarsz	for	Storm	- C1	irchard	od ou	+f-11		
	Alea Su		IUI	SLUIN	II – 51	LUIIALY	eu ou	<u>LIAII</u>		
	Pipe 1	PIMP PIN	IP PIM	IP Gr	oss	Imp.	Pipe	Total		
	Number !	Type Nam	ne (%)) Area	(ha)	Area (ha)	(h	a)		
	1 000		1.0		0 0 0 0 0	0.001		0 005		
	1.000	_	- 10	0	0.035	0.035	5	0.035		
	2.000	-	- 10	0	0.116	0.116	5	0.116		
	1.002	-	- 10	0	0.015	0.015	5	0.015		
	3.000	_	- 10	0	0.050	0.050) 1	0.050		
	4.000	_	- 10	0	0.161	0.161	- -	0.161		
	4.001	-	- 10	0	0.203	0.203	3	0.203		
	1.004	-	- 10	0	0.025	0.025	5	0.025		
	5.000	_	- 10	0	0.048	0.099)	0.048		
	6.000	-	- 10	0	0.027	0.027	7	0.027		
	6.001	-	- 10	0	0.000	0.000)	0.000		
	5.002	-	- 10	0	0.000	0.000) 1	0.000		
	1.005	-	- 10	0	0.050	0.050)	0.050		
	7.000	-	- 10	0	0.050	0.050)	0.050		
	8.000	-	- 10	0	0.150	0.150)	0.150		
	1.007	-	- 10	0	0.000	0.000)	0.000		
	1.008	-	- 10	0	0.068	0.068	3	0.068		
	1.009	-	- 10	0	0.000	0.000)	0.000		
	1.010	-	- 10	0	0.000 Total	0.000 Total)	0.000 Total		
					1.253	1.253	3	1.253		
Surcha	arged Out	fall I	Detai	ls fo	or Sto	orm - S	urcha	rged c	utfal	<u>1</u>
	Outfall	Outfa	11 C.	Level	I. Lev	vel Min	n D,	L W		
	Pipe Numbe	er Namo	9	(m)	(m)	т. те (m)	vel (m)	m) (mm)		
						、 ,				
	S1.01	LO S	25	44.643	42.5	595 0.	000 13	50 0		
		Datu	m (m)	0.000	Offset	(mins)	0			
Mime Denth	Time De			Donth	Mima	Denth	Time	Donth	mime	Denth
(mins) (m)	(mins) ((m) (m:	ins)	(m)	(mins)	(m)	(mins)	(m)	(mins)	(m)
,, (-/			-,	,	,,	,/	/	、 <i>/</i>	,	. /
1 45.240	12 45	.240	23 4	15.240	34	45.240	45	45.240	56	45.240
3 45.240	13 45	.240	24 4	15.240	35	45.240	40 47	45.240	58	45.240
4 45.240	15 45	.240	26 4	15.240	37	45.240	48	45.240	59	45.240
5 45.240	16 45	.240	27 4	15.240	38	45.240	49	45.240	60	45.240
6 45.240 7 45.240	1/ 45 18 45	.240	28 4	±5.240	39	45.240	50 51	45.240	61 62	45.240 45.240
8 45.240	19 45	.240	30 4	15.240	41	45.240	52	45.240	63	45.240
9 45.240	20 45	.240	31 4	45.240	42	45.240	53	45.240	64	45.240
10 45.240	21 45	.240	32 4	15.240	43	45.240	54	45.240	65 65	45.240 45.240
11 40,240	22 4J	• 2 3 0	JJ 4		44	-J.240	JJ	-3.240	00	10.270
		@1 (100 0	015 1		111+ 1 0				
		OT 2	,0Z-Z	VIJ X	VE 20.	LUCIONS				

Atkins Lt	td									Pa	age 70	
The Axis	_									5		
10 Hollid	day St	reet									Ly,	~
Birmingha	am Bl	L'I'E'	6		Deele		- DOMN	1 (7 0		N	<i>licro</i>	
Date 197.	10/201 20 2c4	6 U9:J	LO ID MOD		Desig	nea by	7 DOWN	16/9)rainac	10
File PHA:	5E 3&4	MASTE	SR MOD.	۵۵	Netue	ea by						J
MICLO DI	ainage				Netwo	IK ZU.	13.1					
5	Surcha	rged C	utfal]	l Deta	ils fo	or Sto	<u>rm - S</u>	Surcha	rged c	outfal	1	
Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	Time (mins)	Depth (m)	
20035	45.240	20056	45.240	20077	45.240	20098	45.240	20119	45.240	20140	45.240	
20036	45.240	20057	45.240	20078	45.240	20099	45.240	20120	45.240	20141	45.240	
20037	45.240	20058	45.240	20079	45.240	20100	45.240	20121	45.240	20142	45.240	
20039	45.240	20060	45.240	20081	45.240	20102	45.240	20123	45.240	20144	45.240	
20040	45.240	20061	45.240	20082	45.240	20103	45.240	20124	45.240	20145	45.240	
20041	45.240	20062	45.240	20083	45.240	20104	45.240	20125	45.240	20146	45.240	
20042	45.240	20063	45.240	20084	45.240	20105	45.240	20126	45.240	20147	45.240	
20043	45.240	20064	45.240	20085	45.240	20106	45.240	20127	45.240	20148	45.240	
20044	45.240	20065	45.240	20086	45.240	20107	45.240	20128	45.240	20149	45.240 45.240	
20045	45.240	20067	45.240	20088	45.240	20100	45.240	20120	45.240	20150	45.240	
20047	45.240	20068	45.240	20089	45.240	20110	45.240	20131	45.240	20152	45.240	
20048	45.240	20069	45.240	20090	45.240	20111	45.240	20132	45.240	20153	45.240	
20049	45.240	20070	45.240	20091	45.240	20112	45.240	20133	45.240	20154	45.240	
20050	45.240	20071	45.240	20092	45.240	20113	45.240	20134	45.240	20155	45.240	
20051	45.240	20072	45.240	20093	45.240	20114	45.240	20135	45.240	20156	45.240	
20052	45.240	20073	45.240	20094	45.240	20115	45.240	20136	45.240	20157	45.240	
20053	45.240	20074	45.240	20095	45.240	20110	45.240	20137	45.240	20150	45.240	
20055	45.240	20076	45.240	20097	45.240	20118	45.240	20139	45.240	20160	45.240	
	<u>Sin</u>	nulati	on Cri	teria	for S	torm -	- Surc	hargeo	d outfa	<u>all</u>		
	Vol	lumetric	Runoff	Coeff	0.750	Additio	onal Flo	w - % o	f Total	Flow 0	.000	
	Ai	real Red	Start	Factor	1.000	MAI	DD Facto	r * 10m	°/ha Sto Cooffic	orage U	.000	
		Hot Sta	rt Leve	(m113) 1 (mm)	0 F.	low per	Person	per Dav	(1/per/	/dav) 0	.000	
Manl	hole Hea	adloss C	oeff (G	lobal)	0.500			Run	Time (r	mins)	60	
F	oul Sewa	age per	hectare	(l/s)	0.000		Out	put Int	erval (r	mins)	1	
Number of Number o	Input H of Onlin	lydrogra e Contr	phs 0 ols 1 N	Number umber o	of Offi f Storag	line Cor ge Struc	trols 0 tures 1	Number Number	of Tim of Rea	e/Area 1 1 Time (Diagrams Controls	0 0
			Sy	nthet	ic Rai	nfall	Detai	<u>ls</u>				
	D - /	Rainfa	all Mode	1		FSR		Profile	e Type S	Summer		
	Retur	n Perio	a (years Regio) n Engla	and and	L Wales		CV (St	ummer)	0.750		
		M	леуіс 5-60 (mm	n Eligië 1)	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	9.100 S	torm Du	ration (Wi	(mins)	30		
		11,	Ratio	, R	-	0.400			,	00		
1												

Atkins Ltd							Page 71	L
The Axis								
10 Holliday St	reet						L'	
Birmingham B1	1TF						Micro	Jun
Date 19/10/201	6 09:16		Designe	d by DOWN	1679			
File PHASE 3&4	MASTER MO	DDEL	Checked	by			Didiiic	IJE
Micro Drainage			Network	2015.1				
<u>C</u>	<u>)nline Con</u>	trols fo	or Storm	- Surcha	rged outf	all		
Hydro-Brake	Ontimum®	Manhole	s	DS/PN· S1	010. Vol	ume (n	ı³)• 5 0	
<u>ilydro brake</u>				<u>D0/110.01</u>	.010/ 001			_
		Unit	Reference	MD-SHE-0128	3-8800-1600-	8800		
		Desig	n Head (m)		1	.600		
		Design	Flow (1/s) Flush-Flo™	м	Calcul	8.8 ated		
			Objective	e Minimise u	upstream sto	rage		
		Dia	meter (mm)			128		
M	inimum Outle	Invert t. Pipe Dia	Level (m) meter (mm)		42	150		
14	Suggested M	anhole Dia	meter (mm)			1200		
Control Poir	nts Hea	d (m) Flow	v (1/s)	Control H	Points	Head (n	n) Flow (1	/s)
		1 600	. (_, _,				., (_	., _,
Design Point (Cal Fl	culated) ush-Flo™	1.600 0.468	8.7 8.7 Me	an Flow over	Kick-Flo® Head Range	0.97	-	6.9 7.6
			I					
The hydrological	calculation:	s have bee	n based on	the Head/Di	scharge rel	ationshi	p for the	udro-
Brake Optimum® b	e utilised ti	hen these	storage ro	outing calcul	ations will	be inva	lidated	yuro-
Depth (m) Flo	w (1/s) Dept	h (m) Flow	w (1/s) De	pth (m) Flow	r (1/s) Dept	:h (m) F	low (l/s)	
0.100	4.6	1.200	7.6	3.000	11.7	7.000	17.6	
0.200	8.4	1.400	8.2	4.000	13.5	8.000	18.2	
0.400	8.6	1.800	9.2	4.500	14.2	8.500	19.3	
0.500	8.7	2.000	9.7	5.000	15.0	9.000	19.8	
0.800	8.0	2.200	10.1	6.000	16.3	9.500	20.4	
1.000	7.0	2.600	11.0	6.500	17.0			
					·			
		@1982_	2015 VP	Solutions	2			
		GT JOZ-	LUIJ AF	SOLUCIOUS	,			

Atkins Ltd		Page 72
The Axis		
10 Holliday Street		<u>Y</u>
Birmingham B1 1TF		Micro
Date 19/10/2016 09:16	Designed by DOWN1679	
File PHASE 3&4 MASTER MODEL	Checked by	Diamaye
Micro Drainage	Network 2015.1	

Storage Structures for Storm - Surcharged outfall

Tank or Pond Manhole: S24, DS/PN: S1.010

Invert Level (m) 42.618

Depth (m)	Area (m²)						
0.000	370.0	1.000	660.0	1.001	826.0	1.800	1020.0

Atkins	Ltd						Page 73						
The Axi	S												
10 Holl	iday	Street					L'						
Birming	ham	B1 1TF					Micco						
Date 19	/10/2	016 09:16	5	Des	signed by DO	WN1679							
File PH	ase 3	&4 MASTER	R MODEL.	Che	ecked by		Diging						
Micro D	raina	qe		Net	twork 2015.1								
Sum	mary	of Critic	al Resu	ults by	Maximum Lev	vel (Rank 1) for Storm -						
				Surcha	rged outfall								
		Amoni Dodu	ation Room	<u>Simula</u>	tion Criteria	Flore & of mo	tal Eleve 0.000						
		Hot	Start (mi	ns)	0 Additional 0 MADD Fa	ctor * 10m³/ha	Storage 0.000						
		Hot Star	t Level (1	mm)	0	Inlet Coef	fiecient 0.800						
Ma	Manhole Headloss Coeff (Global) 0.500 Flow per Person per Day (1/per/day) 0.000												
	roui Sewage per nectare (1/S) 0.000												
Number o	Number of Input Hydrographs 0 Number of Offline Controls 0 Number of Time/Area Diagrams 0												
Number	of On	line Control	ls 1 Numb	er of St	orage Structure	s 1 Number of	Real Time Controls 0						
			S	<u>ynthetic</u>	Rainfall Detail	ls							
		Rainf	all Model		FSR	Ratio R 0.400							
			Region	n England	d and Wales Cv	(Summer) 0.750							
	M5-60 (mm) 19.100 Cv (Winter) 0.840												
	Margin for Flood Risk Warning (mm) 300.0												
	Analysis Timestep 2.5 Second Increment (Extended)												
				DTS St DVD St	tatus		OFF						
			Ir	nertia St	tatus		ON						
		Pi	cofile(s)			Summer	and Winter						
		Duration(s	s) (mins)	15, 30	, 60, 120, 180,	240, 360, 480	, 600, 720,						
				960, 14	440, 2160, 2880,	, 4320, 5760,	7200, 8640,						
	Retu	rn Period(s)	(years)				1, 30, 100						
		Climate Ch	nange (%)				0, 0, 20						
PN	Name	Storm	Period	Climate	First (X) Surcharge	First (Y) Flood	First (2) Overflow Overflow Act.						
S1.000	S1	15 Winte	r 100	+20%	30/7200 Winter								
S1.001 S2.000	52 S3	15 Winte	r 100	+20%	30/15 Winter								
S1.002	S4	15 Winte	r 100	+20%	1/8640 Winter								
S3.000	S5	15 Winte	r 100	+20%	30/15 Winter								
S1.003 S4.000	S6 S7	15 Winte 15 Winte	r 100 r 100	+20% +20%	1/5/60 Winter 30/4320 Winter								
S4.001	S8	15 Winte	r 100	+20%	30/15 Winter								
S1.004	S9	15 Winte	r 100	+20%	1/4320 Winter								
S5.000	S10	10080 Winte	r 100	+20%	1/5760 Winter								
S6.000	S11 S12	10080 Winte	r 100	+20% +20%	1/7200 Winter								
S6.001	S13	10080 Winte	r 100	+20%	1/5760 Winter								
S5.002	S14	10080 Winte	r 100	+20%	1/2880 Winter								
S1.005	S15 S17	10080 Winte	r 100 r 100	+20% +20%	1/2160 Winter 1/2160 Winter								
s7.000	S21	10080 Winte	r 100	+20%	1/10080 Winter								
S8.000	S19	15 Winte	r 100	+20%	30/15 Summer	100/15 Summer							
S8.001	S20	15 Winte	r 100	+20%	1/5760 Winter								
51.007	510	TOOOD WINTE	.L 100	1208	E VD Cal-+'								
			019	02-2UI	J AP SOLUTIO	JUB							

Summar				Netw	ork 20	015.1				
Summary of Critical Results by Maximum Level (Rank 1) for S Surcharged outfall										
				-						
	US/MH	Water Level	Surcharged Depth	Flooded Volume	Flow /	Overflow	Pipe Flow		Level	
PN	Name	(m)	(m)	(m³)	Cap.	(l/s)	(1/s)	Status	Exceeded	
S1.000	S1	44.938	0.965	0.000	0.40		14.8	SURCHARGED		
S1.001	S2	44.906	1.142	0.000	0.58		45.6	FLOOD RISK		
S2.000	S3	44.905	1.161	0.000	0.62		48.2	SURCHARGED		
S1.002 S3.000	54 S5	44.757	1.209	0.000	0.67		∪∠.3 19.6	SURCHARGED		
s1.003	S6	44.700	1.263	0.000	0.98		101.7	SURCHARGED		
S4.000	S7	44.967	1.081	0.000	0.48		65.0	SURCHARGED		
S4.001	S8	44.850	1.202	0.000	1.08		148.1	FLOOD RISK		
SI.004	S9 S10	44.611 44 518	1.240	0.000	1.59		246.2	SURCHARGED		
s5.000	S10	44.518	1.169	0.000	0.00		0.2	FLOOD RISK		
S6.000	S12	44.518	1.031	0.000	0.00		0.1	SURCHARGED		
S6.001	S13	44.518	1.084	0.000	0.00		0.1	SURCHARGED		
S5.002	S14	44.518	1.192	0.000	0.01		0.8	FLOOD RISK		
S1.005	S15 S17	44.518	1.241	0.000	0.04		4.1	FLOOD RISK		
s7.000	S21	44.518	0.948	0.000	0.02		0.2	SURCHARGED		
S8.000	S19	45.002	1.277	2.311	1.46		58.7	FLOOD	3	
S8.001	S20	44.573	1.114	0.000	2.26		5 5	SURCHARGED		
51.007	010						0.0	001101111022		

Atkins	Ltd								Page	e 75
The Axi	s									
10 Holl	iday	Street	:						4	~
Birming	gham	В1 1ТЕ	ŗ						Mile	Jun
Date 19	9/10/2	016 09	9:16		Design	ed by D	OWN167	79		
File PH	IASE 3	&4 MAS	STER MODE	L	Checke	d bv			Ulc	linage
Micro D)raina		,121, 11022		Networ	$\frac{1}{k} = 2015$	1			
		ge			NCCWOI	K 2010.	1			
Sum	mary	of Cri	tical Re	911]+9	hy Mas	zimum T.4	aval (Rank 1) t	for Stor	m —
<u></u>	unar y	OI CII	LICUI NO	Surc	- by Maz	outfal	1			
				DUIC	JIIII gea	Oucrur	<u> </u>			
										Water
	US/MH		Retur	n Clima	ate Fir	st (X) I	First (Y) First (Z)	Overflow	Level
PN	Name	Stor	m Perio	d Chan	ige Sur	charge	Flood	Overflow	Act.	(m)
S1.008	S22	10080 Wi	inter 10	0 +2	20%					44.518
S1.009	S23	10080 Wi	inter 10	0 +2	20% 1/360	Winter				44.518
S1.010	S24	10080 Wi	inter 10	0 +2	20% 1/360	Winter				44.518
			Surcharged	Floode	ed		Pipe			
		US/MH	Depth	Volum	e Flow /	Overflow	v Flow		Level	
	PN	Name	(m)	(m³)	Cap.	(1/s)	(1/s)	Status	Exceeded	
	S1.008	3 S22	-0.382	0.00	0.01		13.3	OK		
	S1.009	9 S23	1.432	0.00	0.06		5.7	SURCHARGED		
	SI.010) S24	1.450	0.00	0.00		0.0	SURCHARGED		
					0.04 = -					
			C	1982-	2015 XI	? Solut:	ions			

Appendix E. STW – Sewer Requisition – Preliminary Desktop Report

Preliminary Desktop Report

A6S/12844/04/01/05 / 8228853 Pirelli Works, Burton-on-Trent Sewer Requisition

John Amos, Asset Creation, Severn Trent Water 5th August 2016 St Modwen Developments Ltd

Requisition Enquiry by: Requisition Enquiry at : Project number: Notification number: Report prepared by:

Pirelli Works, Burton-on-Trent A6S/12844/04/01/05 8228853 Francis Rooney

1) Brief description of the site

The proposed development site is located off Derby Road, Burton-on-Trent. The site is located in the north of Burton-on-Trent, approximately 2 miles from the City Centre.

The development site is currently a vacant greenfield site, with an empty site to north-east, the Pirelli Tyres works to the north-west, the Pirelli Stadium to the south-west and the A5121 Derby Road to the south-east. The site is approximately 2 ha with a generally flat topography.

The site boundary is shown on drawing number A6S12844-CC00005A in Appendix B.

The proposed development is in a designated flood zone as indicated on Environment Agency Flood map.

A MAGIC search was completed and returned no relevant results

2) Type of sewer requisition and flows to be catered for

The developer has submitted a Sewer Requisition application for a foul water sewer, in accordance with section 98 of the Water Industry Act (1991). The application states that outline planning consent been received for 3 commercial units. The Staffordshire County Council planning consent ref: is P/2011/01130/JN/PO.

The applicant has advised that the peak foul water discharge will be 2.7 litres / second.

3) Description of the existing sewerage system

According to STW sewer records, there is an existing public foul water sewer in the vicinity of the site.

A 150mm diameter foul water sewer is located approximately 50 metres south of the development site. The sewer is located in the carpark of the Pirelli Stadium. Asset Protection have approved discharge of foul water flows from the new development into this sewer.

The sewer is in the Claymills Sewage Treatment Works catchment.

4) Other possible development sites

A search of Glenigans data and Stroud District Council Planning Portal returned the following results in the vicinity of the development site.

MONTH_RECEIVED	HEADING	ADDRESS	APPLICATION_NU	X Ref	Y Ref
132015	11 Employment Units	Land Adjacent To Pirelli Facto, Derby Road,	P/2014/01504	425478	325483
172015	12 Employment Units	Phase 2, Ld Adjacent To Pirelli Factory, Der	P/2015/00285	425478	325483

5) Description of the sewer requisition

On the supplied 'Phase 3 & 4 Proposed FW Rising Main Requisition Location' (Drawing No. 5121643-ATK-DR-D-0506 Rev. P1) it is proposed a foul water pumping station is located within the development site and a pressurised foul water sewer would convey flows to a requisitioned foul sewer in Derby Road.

The nearest feasible point of connection to the STW system is a foul sewer located within the carpark of the Pirelli Stadium at manhole SK25243901 (Minimum depth of cover in accordance with STW Design Standards cannot be achieved at a closer point of connection at manhole SK25243903). According to STW Sewer Records the invert level of the manhole is 43.58 metres.

A 150mm dia foul sewer requisition could be laid from the verge in Derby Road at a gradient of 1 in 150, therefore providing required capacity and satisfy self-cleansing requirements as stated in Sewers for Adoption.

Topographical & Manhole surveys would be required to ascertain accurate gradient and levels of the proposed requisition routes.

The proposed requisition routes are detailed on drawing A6S/12844-CC00005A in Appendix B.

6) Cost of the sewer requisition works

	£000's				
Description	Civils	M&E	Contract	Project	
12m of 150mm dia foul water sewer & 1					
no. 1200 dia manhole	29		29	66	
Contract total	29	0	29		
Feasibility			6		
Site Investigation / Surveys			3		
Design			2		
Support			1		
Land/Easements			3		
Traffic Management			1		
Compensation			1		
Project Management & Assurance			5		
Sub total (A)			51		
Contingencies (25%)			13		
Sub total (B)			64		
Overheads (4.34%)			3		
Project total			66	66	

7) Programme

Formal design instruction to completion of	12 Weeks
detailed feasibility, design, return of tenders	
Tender validity period (lead-in period for New	(max.) 12 Weeks
Connections to obtain monies from developer)	
Receipt of balance payment to Contract Award	10 Weeks
(serving notices, negotiation of outfall	
easements etc)	
Contract award to project commissioning	6 Weeks

The above timescales are an estimate and **may** be affected by possible unavoidable delays as shown below or other unforeseen external factors.

8) Possible unavoidable delays and risks

- 1. Mitigation strategy for protected species. Habitat Survey included in programme above (subject to time of year issues).
- 2. Land Entry Notices to be served (3 weeks included in programme above).
- 3. Footpath Closure / Diversion required TMA notices to be served for works in Derby Road (10 days included in programme above).
- 4. Water Mains (South Staffs Water) Underground Water Mains may cross requisition route, potential requirement for water mains diversion (not included in programme above)
- 5. Electric Cables (Western Power Distribution) HV underground cables cross requisition route. Safe working methods in vicinity of underground cables to be utilised. Potential requirement for electric cable diversion (not included in estimate / programme above).
- Gas Mains (National Grid) MP / IP gas mains cross requisition route. Works approval to be obtained from National Grid. Potential requirement for gas main diversion (not included in estimate / programme above).
- 7. Telecommunication Cables (BT) Telecommunication cables cross requisition route / Overhead apparatus in vicinity of requisition route. Potential requirement for apparatus diversion. (not included in estimate / programme above).

Appendix A - Photographs

Appendix B - Plan

Appendix F. Drainage Strategy Drawing

DO NOT SCALE	NOT	ES					
	1.	TOPOGR REF: 934	APHICAL SURVEY BY GREENH 7C_OGL_REV0.	IATCH LTI	D DR	AWING	G
	2.	MASTERI REF: 160	PLAN BY GLANCY NICHOLLS A 01-A-MP-ST-DR-A-0002i.	RCHITEC	TS DI	RAWIN	NG
	<u>KEY</u>						
and the second sec	G) Pi	ROPOSED STORM NETWORK				
) Pi	ROPOSED FOUL NETWORK Ø1	50mm			
Start Start		UI	NDER FOUL REQUISITION	SEMENT			
	` C) E>	KISTING STW FOUL SEWER	OEMENT			
	HEADWALL PHASE 3 BOUNDARY						
		OI	L INTERCEPTOR				
			DICATIVE LOCATION OF FOUL	PUMP ST	ΑΤΙΟ	N	
Stretton Ho							
Wor							
	1						
	 	30/11/16	FWS OUTFALL LOCATION UPDATI	ED	JD	СВ	MAS
	P7	20/10/16		ADDED.	JD	OP	СВ
	 P6	28/09/16	POND SHAPE AMENDED TO AVOID U EASEMENTS, PUMP STATION MOVE	TILITY D TO	OP	αL	СВ
			SOUTHERN BOUNDARY AND FOOTF REDUCED, MASTERPLAN UPDATI				
	P5 P4	13/09/16 09/09/16	REFERENCE TO RODGERS LEASK DES PLANNING APPLICATION ADDEL NOTE ADDED TO POND	IGN AND	OP OP	JD	СВ
	Р3	08/09/16	OIL INTERCEPTOR DOWNSTREAM OF REMOVED, SECOND INTERCEPTOR MOV UPSTREAM OF POND, DRAWING TITLE A	MH S19 'ED TO BE AMENDED	OP	JD	СВ
	P2	02/09/16	MASTERPLAN UPDATED TO REVISE POS POND AND REMOVAL OF PUB, SURFAC FOUL WATER DRAINAGE HAS BEEN REV	SITION OF CE AND VISED TO	OP	JD	СВ
	P1	05/05/16	FOR COMMENT		NR	LGF	MAS
	Rev.	Date	Description		Ву	Chk'd	App'd
	awin	F	OR INFORMATIO	N		Sunabil	2
			The A 10 Ho	∖xis olliday Stre	et		
/			Birmin B1 17	ngham F			
ER TO MAIN VIEW FOR CONTINUATION			Tel: + Fax: +	-44 (0)121 -44 (0)121	4 835 4 835	5000 5252	
	Copy Client	right 🔘	Atkins Limited (2016) www.	atkinsglob	al.co	m	
		2			C		
EXISTING FWS MANHOLE STW REF:SK25243903			SI'IAIA	JYY	C		
	Project	Title			 . –		
	PIRELLI REDEVELOPMENT BURTON						
	Drowin	n Title					
	PHASE 3						
	PROPOSED DRAINAGE						
	Scale		Designed Drawn (Checked	A	uthorisec	ł
l l l l l l l l l l l l l l l l l l l	Origina	1:500 Size A1	JD JD Date Date [20/02/16 20/02/16	LGF Date		MT Pate	/16
BRÉAK CHAMBER	Drawin	g Number		03/03/16		Revisio	n n
INSET A	1	512	21043-AIK-DK-D-08	U/		1 48	

Appendix G. Technical Note - Derby Road Drainage Discharge Rates - Phases 1 & 2

Pirelli Site Redevelopment: Albion Gateway Mixed-use Development

Drainage Discharge Rates: Phases 1 & 2

Client: St Modwen

March 2015

Document history

Job number: 5121643			Document ref:	Drainage Disch	arge Rates: Pha	ases 1 & 2
Revision	Purpose description	Originated	Checked	Reviewed	Authorised	Date
Rev 1.0	For LLFA Approval	CO	PB	KMR	MS	03/03/15

. . .

1. Background

The new commercial/industrial Albion Gateway development proposed for the southern side of Pirelli's factory site in Burton-upon-Trent lends itself to two outfall locations; the Stretton Brook to the north and the Horninglow Channel to the south. A development enquiry was submitted to Severn Trent Water and a response has been received stating that surface water proposals should be agreed with the Lead Local Flood Authority (Staffordshire County Council). The drainage strategy for Phases 1 & 2 is being developed on the basis that the discharge point will be to the nearest available outfall which is the existing culvert in Beech Avenue (the culverted Stretton Brook) to the north (which ultimately discharges to the River Trent).

The planning consent document for the development site (East Staffordshire Borough Council Application Reference P/2011/01130/JN/PO) includes the following drainage condition (Condition 25):

25. The development hereby approved shall only be carried out in accordance with the recommendations set out in Section 8.3 of the approved Flood Risk Assessment (prepared by Halcrow and dated 1st August 2011).

Reason: As recommended by the Environment Agency to minimise the risk of flooding in accordance with the National Planning Policy Framework (in particular Section 10).

The following text is an extract from Section 8.3 ("Recommendations") of Halcrow's FRA which makes reference to surface water proposals:

To provide additional safety to the development and to ensure any residual flood risk is mitigated for, it is recommended that the following measures are incorporated into the design, build and operation of the Pirelli development:

5. Surface water runoff from the site is disposed of in a sustainable manner through the use of SuDS as recommended by PPS 25. A betterment of 30 % is also applied to the rate at which surface water runoff is discharged from the site to fully account for the effects of climate change.

2. Run-off Calculations

To address the recommendation in the approved FRA that a 30% betterment is applied to the existing rate of run-off, we consider that there are two options available:

- 1. Use a simple control structure to discharge the site at 30% betterment of the existing QBAR (i.e. 1 in 2.33-year) run-off rate across all return periods. (i.e. the allowable discharge rate would be the same for each return period which would provide a betterment of approximately 30% for all storm events with a return period of 1 in 2.333 year or less, and more than 30% betterment on higher return periods.)
- 2. Use a complex control structure to discharge the site at a 30% betterment of each of the existing runoff rates in the 1 in 1-year, 1 in 30-year and 1 in 100-year plus 20% Climate Change return periods. (i.e. the allowable discharge rate would be different for each return period.)

In the absence of level information for the proposed outfall (i.e. the culvert in Beech Avenue), the option of using a system with a complex control cannot be evaluated to give sufficient confidence in the results and as such, only Option 1 has been addressed in this technical note. Upon receipt of the level information, the potential advantages of designing the drainage network to utilise a complex control (i.e. Option 2) will be assessed.

Phases 1 and 2 are a mixture of existing permeable and impermeable areas. The discharge rate from each has been assessed to determine the maximum permitted discharge rate from the two phases.

2.1. Run-off rate from existing impermeable areas

The existing discharge rate for areas that are presently brownfield would usually be determined by the lower of either; the discharge rate calculated by an assessment of the existing site areas, or, the discharge rate presently leaving the site via existing drainage systems based on the diameter and gradient of the existing outfall pipes. In the absence of level and pipe size information for the proposed outfall (i.e. the culvert in Beech Avenue), the existing discharge rate from areas that are presently brownfield has been calculated by an assessment of catchment areas (rather than outfall pipe diameters and gradients).

The modified rational method has been used to calculate the QBAR flow rates (i.e. maximum flow rates for a 1 in 2.333 year return period) for the existing impermeable area. The time of concentration (for Phases 1 and 2) has been calculated (based on site area, length and slope) to be 15 minutes (0.25 hours). A rainfall event with a return period of 1 in 2.33 years and a duration equal to the time of concentration has an average intensity of 40 mm/hr which gives a maximum run-off flow rate of 153.1 l/s for the existing impermeable catchment area (in Phases 1 & 2) of 1.38 hectares.

2.2. Run-off rate from existing permeable (greenfield) areas

To determine the QBAR flow rate for the existing greenfield areas, the ICP SUDS method has been used (see Micro Drainage calculation sheet included in Appendix A).

2.3. Total existing run-off rate from Phases 1 & 2

	Area (ha)	QBAR (I/s)
Existing impermeable area (hardstanding)	1.378	153.1
Existing permeable area (greenfield)	0.355	1.6
Total:	1.733 ha	154.7 (153.1 + 1.6)
30% betterment on Total QB	108.3 (70% of 154.7)	

Table 1. QBAR Values and 30% Betterment

Technical Note: Burton Albion Gateway Discharge Rates & Quick Storage Calcs - Phases 1 & 2

3. Quick Storage Estimates

The following calculations are based on impermeable areas taken from Glancy Nicholls' Masterplan reference 14022-A001 Rev B.

3.1. Phases 1 & 2 Combined

For a proposed impermeable area of 1.556 hectares and when restricting the discharge rate to a 30% betterment on the existing QBAR rate for the 1 in 100-year + 20% Climate Change event, the storage volume required, using the Quick Storage Estimate tool in Micro Drainage, is calculated to be between 287m³ and 506m³:

🖌 Quick Storage	Estimate						
	Variables						
Micro	FSR Rainfall		•	Cv (Summer)	0.750		
Diamaye	Return Period	(years)	100	Cv (Winter)	0.840		
	_			Impermeable Area (ha)	1.556		
Variables	Region	England and	Wales 👻	Maximum Allowable Discharge	108.3		
Results	Мар	M5-60 (mm)	19.100	(i) Sj			
Design		Ratio R	0.400	Infiltration Coefficient (m/hr)	0.00000		
Overview 2D				Safety Factor	2.0		
0				(limate Change (%)	20		
Overview 3D				Climate Change (%)			
Vt							
Analyse OK Cancel Help							
Enter Area between 0.000 and 999.999							

3.2. Phases 1 & 2 Separately

If Phases 1 & 2 are to have separate storage features and controls, their discharge rates, based on a pro-rata of the total area of each phase, would be as per Table 2.

	Total Area of Phase		Allowable Discharge Rate based on Total Area of each Phase as a Percentage of Total Site Area
Phase 1	0.806 ha	47%	50.9 l/s
Phase 2	0.914 ha	53%	57.4 l/s

3.2.1. Phase 1

For a proposed impermeable area of 0.717 hectares, the storage volume required has been calculated using the Quick Storage Estimate tool in Micro Drainage, to be between 131m³ and 231m³:

🖌 Quick Storage	Estimate						
	Variables						
Micro	FSR Rainfall		-	Cv (Summer)	0.750		
Diamage	Return Period	(years)	100	Cv (Winter)	0.840		
	. .			Impermeable Area (ha)	0.717		
Variables	Region	England and	Wales 🔻	Maximum Allowable Discharge (l/s)	50.9		
Results	Мар	M5-60 (mm)	19.100	v/			
Design		Ratio R	0.400	Infiltration Coefficient (m/hr)	0.00000		
Overview 2D				Safety Factor	2.0		
Overview 3D				Climate Change (%)	20		
Vt							
	Analyse OK Cancel Help						
	Enter M	laximum Allowat	ble Discharge b	between 0.0 and 999999.0			

3.2.2. Phase 2

For a proposed impermeable area of 0.839 hectares, the storage volume required has been calculated using the Quick Storage Estimate tool in Micro Drainage, to be between 156m³ and 275m³:

J	🗸 Quick Storage	Estimate						
	5	Variables						
	Micro	FSR Rainfall	-	Cv (Summer)	0.750			
	Diamage	Return Period (years)	100	Cv (Winter)	0.840			
				Impermeable Area (ha)	0.839			
	Variables	Region England and	Wales 👻	Maximum Allowable Discharge	57.4			
	Results	Map M5-60 (mm)	19.100	(//5)				
	Design	Ratio R	0.400	Infiltration Coefficient (m/hr)	0.00000			
	boolgii			Safety Factor	20			
	Overview 2D			,	2.0			
	Overview 3D			Climate Change (%)	20			
	Vt							
	Analyse OK Cancel Help							
	Enter Maximum Allowable Discharge between 0.0 and 999999.0							
	Enter Maximum Anomabic Elsenarge between 0.0 and 333333.0							

Appendix A. Rural run-off Calculation for existing greenfield area

W S Atkins		Page 1
Cornerstone House		
Stafford Park 13		m m
Teltord TF3 3AZ		Micro
Date 17/02/2015 11:17	Designed by OWEN5361	Nrainage
File	Checked by	Drainiage
Micro Drainage	Source Control 2014.1.1	
ICP SUD	S Mean Annual Flood	
	Input	
Return Period (yea Area (SAAR (rs) 100 Soil 0.450 ha) 0.355 Urban 0.000 mm) 700 Region Number Region 4	
	Results 1/s	
	QBAR Rural 1.6 QBAR Urban 1.6	
	Q100 years 4.0	
	Q1 year 1.3	
	Q30 years 3.1	
	Q100 years 4.0	

Appendix H. Rodgers Leask – Technical Note – Drainage Strategy

Project:	Albion Gateway Phase 3 - Burton
Subject:	Technical Note – drainage strategy
Date:	20.10.16
Prepared by:	B Daykin
Authorised by:	B Daykin

Phase 3 Drainage strategy

To accompany Rodgers Leask Drawing P16-145-203 and P15-089-203(1) and (2)

Surface Water:

The original phase 1 and 2 development area covered part of the current phase 3 application boundary with all of that surface water generated from this phase 1 and 2 area proposed to drain to the outfall, as previously agreed by Atkins, and as noted on drawings 203(1) and 203(2).

Post planning and part way through the detailed design of the phase 1/2 works the client made a request to "future proof" the phase 1/2 attenuation size so that if could accommodate the full extent of the possible phase 2 area (and now the phase 3 area).

This exercise was carried out by Rodgers Leask Ltd design team and then subsequently by the phase 1/2 contractors design team. The attenuation sized installed as part of that phase 1/2 contract has therefore been sized to cater for the area that is now termed Phase 3. All phase 1/2 outfall conditions remain as previously agreed.

Foul Water:

As with surface water the foul system originally designed to serve the phase 1 and 2 development area was "future proofed" to allow connection of the possible full extent of the phase 2 area, part of which is now noted as the phase 3 development.

Pipe sizing and the foul water pumping station have therefore been designed and installed to accommodate foul flows from the phase 3 area.